These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20084533)

  • 41. Direct detection and characterization of chloride in the active site of the low-pH form of sulfite oxidase using electron spin echo envelope modulation spectroscopy, isotopic labeling, and density functional theory calculations.
    Klein EL; Astashkin AV; Ganyushin D; Riplinger C; Johnson-Winters K; Neese F; Enemark JH
    Inorg Chem; 2009 Jun; 48(11):4743-52. PubMed ID: 19402624
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pulsed EPR studies of nonexchangeable protons near the Mo(V) center of sulfite oxidase: direct detection of the alpha-proton of the coordinated cysteinyl residue and structural implications for the active site.
    Astashkin AV; Raitsimring AM; Feng C; Johnson JL; Rajagopalan KV; Enemark JH
    J Am Chem Soc; 2002 May; 124(21):6109-18. PubMed ID: 12022845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli.
    Havelius KG; Reschke S; Horn S; Döring A; Niks D; Hille R; Schulzke C; Leimkühler S; Haumann M
    Inorg Chem; 2011 Feb; 50(3):741-8. PubMed ID: 21190337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implications for the mechanism of sulfite oxidizing enzymes from pulsed EPR spectroscopy and DFT calculations for "difficult" nuclei.
    Enemark JH; Raitsimring AM; Astashkin AV; Klein EL
    Faraday Discuss; 2011; 148():249-67; discussion 299-314. PubMed ID: 21322488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nature of halide binding to the molybdenum site of sulfite oxidase.
    Pushie MJ; Doonan CJ; Wilson HL; Rajagopalan KV; George GN
    Inorg Chem; 2011 Oct; 50(19):9406-13. PubMed ID: 21894921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elucidating the Structures of the Low- and High-pH Mo(V) Species in Respiratory Nitrate Reductase: A Combined EPR,
    Rendon J; Biaso F; Ceccaldi P; Toci R; Seduk F; Magalon A; Guigliarelli B; Grimaldi S
    Inorg Chem; 2017 Apr; 56(8):4423-4435. PubMed ID: 28362087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct electrochemistry of a bacterial sulfite dehydrogenase.
    Aguey-Zinsou KF; Bernhardt PV; Kappler U; McEwan AG
    J Am Chem Soc; 2003 Jan; 125(2):530-5. PubMed ID: 12517167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy.
    Astashkin AV; Johnson-Winters K; Klein EL; Byrne RS; Hille R; Raitsimring AM; Enemark JH
    J Am Chem Soc; 2007 Nov; 129(47):14800-10. PubMed ID: 17983221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of chloride-depleted human sulfite oxidase by electron paramagnetic resonance spectroscopy: experimental evidence for the role of anions in product release.
    Rajapakshe A; Johnson-Winters K; Nordstrom AR; Meyers KT; Emesh S; Astashkin AV; Enemark JH
    Biochemistry; 2010 Jun; 49(25):5154-9. PubMed ID: 20491442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The pH dependence of intramolecular electron transfer rates in sulfite oxidase at high and low anion concentrations.
    Pacheco A; Hazzard JT; Tollin G; Enemark JH
    J Biol Inorg Chem; 1999 Aug; 4(4):390-401. PubMed ID: 10555573
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sulfite oxidation by the quinone-reducing molybdenum sulfite dehydrogenase SoeABC from the bacterium Aquifex aeolicus.
    Boughanemi S; Infossi P; Giudici-Orticoni MT; Schoepp-Cothenet B; Guiral M
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148279. PubMed ID: 32735861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intramolecular electron transfer between molybdenum and iron mimicking bacterial sulphite dehydrogenase.
    Hüttinger K; Förster C; Heinze K
    Chem Commun (Camb); 2014 Apr; 50(33):4285-8. PubMed ID: 24452096
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The molybdoproteome of Starkeya novella--insights into the diversity and functions of molybdenum containing proteins in response to changing growth conditions.
    Kappler U; Nouwens AS
    Metallomics; 2013 Apr; 5(4):325-34. PubMed ID: 23310928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bacterial sulfite-oxidizing enzymes.
    Kappler U
    Biochim Biophys Acta; 2011 Jan; 1807(1):1-10. PubMed ID: 20851097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-ray-absorption and electron-paramagnetic-resonance spectroscopic studies of the environment of molybdenum in high-pH and low-pH forms of Escherichia coli nitrate reductase.
    George GN; Turner NA; Bray RC; Morpeth FF; Boxer DH; Cramer SP
    Biochem J; 1989 May; 259(3):693-700. PubMed ID: 2543368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytochrome c551 from Starkeya novella: characterization, spectroscopic properties, and phylogeny of a diheme protein of the SoxAX family.
    Kappler U; Aguey-Zinsou KF; Hanson GR; Bernhardt PV; McEwan AG
    J Biol Chem; 2004 Feb; 279(8):6252-60. PubMed ID: 14645228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic voltammetry of the molybdoenzyme sulfite dehydrogenase from Sinorhizobium meliloti.
    Kalimuthu P; Kappler U; Bernhardt PV
    J Phys Chem B; 2014 Jun; 118(25):7091-9. PubMed ID: 24892218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.
    Calvo R; Passeggi MC; Isaacson RA; Okamura MY; Feher G
    Biophys J; 1990 Jul; 58(1):149-65. PubMed ID: 2166597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.
    Enemark JH
    Dalton Trans; 2017 Oct; 46(39):13202-13210. PubMed ID: 28640289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation.
    Stein N; Love D; Judd ET; Elliott SJ; Bennett B; Pacheco AA
    Biochemistry; 2015 Jun; 54(24):3749-58. PubMed ID: 26042961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.