These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20084627)

  • 1. Thermophoresis of single stranded DNA.
    Reineck P; Wienken CJ; Braun D
    Electrophoresis; 2010 Jan; 31(2):279-86. PubMed ID: 20084627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic chip of fast DNA hybridization using denaturing and motion of nucleic acids.
    Chung YC; Lin YC; Chueh CD; Ye CY; Lai LW; Zhao Q
    Electrophoresis; 2008 May; 29(9):1859-65. PubMed ID: 18393337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the similarity in thermophoresis between single- and double-stranded DNA or RNA.
    Reichl M; Herzog M; Greiss F; Wolff M; Braun D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062709. PubMed ID: 26172738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomolecular theorem proving on a chip: a novel microfluidic solution to a classical logic problem.
    Lee SH; van Noort D; Yang KA; Lee IH; Zhang BT; Park TH
    Lab Chip; 2012 Apr; 12(10):1841-8. PubMed ID: 22441410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion coefficient of DNA molecules during free solution electrophoresis.
    Nkodo AE; Garnier JM; Tinland B; Ren H; Desruisseaux C; McCormick LC; Drouin G; Slater GW
    Electrophoresis; 2001 Aug; 22(12):2424-32. PubMed ID: 11519946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic bioprocessor for concentrating cells and molecules.
    Wong PK; Chen CY; Wang TH; Ho CM
    Anal Chem; 2004 Dec; 76(23):6908-14. PubMed ID: 15571340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophoresis of DNA determined by microfluidic fluorescence.
    Duhr S; Arduini S; Braun D
    Eur Phys J E Soft Matter; 2004 Nov; 15(3):277-86. PubMed ID: 15592768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows.
    Pappaert K; Biesemans J; Clicq D; Vankrunkelsven S; Desmet G
    Lab Chip; 2005 Oct; 5(10):1104-10. PubMed ID: 16175267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks.
    Jiang X; Xu Q; Dertinger SK; Stroock AD; Fu TM; Whitesides GM
    Anal Chem; 2005 Apr; 77(8):2338-47. PubMed ID: 15828766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical fluid and biomolecule transport with thermal fields.
    Weinert FM; Mast CB; Braun D
    Phys Chem Chem Phys; 2011 Jun; 13(21):9918-28. PubMed ID: 21240434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations.
    Hammack A; Chen YL; Pearce JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031915. PubMed ID: 21517533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical cell with periodic resistive heating for the measurement of heat, mass, and thermal diffusions in liquid mixtures.
    Hartung M; Köhler W
    Rev Sci Instrum; 2007 Aug; 78(8):084901. PubMed ID: 17764346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band broadening in gel electrophoresis: scaling laws for the dispersion coefficient measured by FRAP.
    Tinland B; Pernodet N; Pluen A
    Biopolymers; 1998 Oct; 46(4):201-14. PubMed ID: 9715664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and numerical simulation of a DNA electrophoretic stretching device.
    Kim JM; Doyle PS
    Lab Chip; 2007 Feb; 7(2):213-25. PubMed ID: 17268624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of single-stranded DNA fragments at a 10-nucleotide resolution by stretching in microfluidic channels.
    Wu J; Zhao SL; Gao L; Wu J; Gao D
    Lab Chip; 2011 Dec; 11(23):4036-40. PubMed ID: 21997134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-of-flight thermal flowrate sensor for lab-on-chip applications.
    Berthet H; Jundt J; Durivault J; Mercier B; Angelescu D
    Lab Chip; 2011 Jan; 11(2):215-23. PubMed ID: 21072440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Product differentiation during continuous-flow thermal gradient PCR.
    Crews N; Wittwer C; Palais R; Gale B
    Lab Chip; 2008 Jun; 8(6):919-24. PubMed ID: 18497912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence correlation spectroscopy for ultrasensitive DNA analysis in continuous flow capillary electrophoresis.
    Fogarty K; Van Orden A
    Methods; 2009 Mar; 47(3):151-8. PubMed ID: 18852049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.