These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20084635)

  • 1. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure.
    Hradilová J; Rehulka P; Rehulková H; Vrbová M; Griga M; Brzobohatý B
    Electrophoresis; 2010 Jan; 31(2):421-31. PubMed ID: 20084635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+.
    Roth U; von Roepenack-Lahaye E; Clemens S
    J Exp Bot; 2006; 57(15):4003-13. PubMed ID: 17075075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study.
    Aloui A; Recorbet G; Gollotte A; Robert F; Valot B; Gianinazzi-Pearson V; Aschi-Smiti S; Dumas-Gaudot E
    Proteomics; 2009 Jan; 9(2):420-33. PubMed ID: 19072729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress.
    Ahsan N; Nakamura T; Komatsu S
    Amino Acids; 2012 Jan; 42(1):317-27. PubMed ID: 21107622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana.
    Zhao L; Sun YL; Cui SX; Chen M; Yang HM; Liu HM; Chai TY; Huang F
    Chemosphere; 2011 Sep; 85(1):56-66. PubMed ID: 21723586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis.
    Chora S; Starita-Geribaldi M; Guigonis JM; Samson M; Roméo M; Bebianno MJ
    Aquat Toxicol; 2009 Oct; 94(4):300-8. PubMed ID: 19716188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches.
    Alvarez S; Berla BM; Sheffield J; Cahoon RE; Jez JM; Hicks LM
    Proteomics; 2009 May; 9(9):2419-31. PubMed ID: 19343712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome.
    Klubicová K; Danchenko M; Skultety L; Miernyk JA; Rashydov NM; Berezhna VV; Pret'ová A; Hajduch M
    Environ Sci Technol; 2010 Sep; 44(18):6940-6. PubMed ID: 20715763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: contribution of the basal stem compared to the root.
    Douchiche O; Chaïbi W; Morvan C
    J Hazard Mater; 2012 Oct; 235-236():101-7. PubMed ID: 22858130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of heart tissue protein profiles in acute cadmium-treated scallops Patinopecten yessoensis.
    Huang QY; Fang CW; Huang HQ
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):90-8. PubMed ID: 20437039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd.
    Zeng XW; Qiu RL; Ying RR; Tang YT; Tang L; Fang XH
    Chemosphere; 2011 Jan; 82(3):321-8. PubMed ID: 21074242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium tolerance and accumulation in eight potential energy crops.
    Shi G; Cai Q
    Biotechnol Adv; 2009; 27(5):555-61. PubMed ID: 19393309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: potential role of transferrin in cadmium toxicity.
    Zhu JY; Huang HQ; Bao XD; Lin QM; Cai Z
    Aquat Toxicol; 2006 Jun; 78(2):127-35. PubMed ID: 16647146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proteomic analysis of cold stress responses in rice seedlings.
    Cui S; Huang F; Wang J; Ma X; Cheng Y; Liu J
    Proteomics; 2005 Aug; 5(12):3162-72. PubMed ID: 16078185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic evaluation of cadmium toxicity on the midge Chironomus riparius Meigen larvae.
    Lee SE; Yoo DH; Son J; Cho K
    Proteomics; 2006 Feb; 6(3):945-57. PubMed ID: 16372273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response?
    Fagioni M; Zolla L
    J Proteome Res; 2009 May; 8(5):2519-29. PubMed ID: 19290619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metaproteomic analysis of a bacterial community response to cadmium exposure.
    Lacerda CM; Choe LH; Reardon KF
    J Proteome Res; 2007 Mar; 6(3):1145-52. PubMed ID: 17284062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean.
    Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH
    Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars.
    Huang B; Xin J; Yang Z; Zhou Y; Yuan J; Gong Y
    J Agric Food Chem; 2009 Oct; 57(19):8950-62. PubMed ID: 19739669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.