These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 20084739)
1. Characterization of a new ultra-low volume fuselage spray configuration on Air Force C-130H airplane used for adult mosquito control. Breidenbaugh M; Haagsma K; Latham M; de Szalay F US Army Med Dep J; 2009; ():66-76. PubMed ID: 20084739 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges. Breidenbaugh MS; Haagsma KA; Wojcik GM; De Szalay FA J Am Mosq Control Assoc; 2009 Dec; 25(4):467-73. PubMed ID: 20099594 [TBL] [Abstract][Full Text] [Related]
3. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted generators for adult mosquito control. Mount GA J Am Mosq Control Assoc; 1998 Sep; 14(3):305-34. PubMed ID: 9813829 [TBL] [Abstract][Full Text] [Related]
4. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides. Hornby JA; Robinson J; Opp W; Sterling M J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940 [TBL] [Abstract][Full Text] [Related]
5. Equipping a multi-engined aircraft with a fuselage-mounted spray system for the ultra-low-volume application of malathion. Lofgren CS; Ford HR; Tonn RJ; Jatanasen S Bull World Health Organ; 1970; 42(1):157-63. PubMed ID: 4392343 [No Abstract] [Full Text] [Related]
6. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia. Hewitt AJ; Solomon KR; Marshall EJ J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760 [TBL] [Abstract][Full Text] [Related]
7. A comparison of two ultra-low-volume spray nozzle systems by using a multiple swath scenario for the aerial application of fenthion against adult mosquitoes. Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA J Am Mosq Control Assoc; 2004 Mar; 20(1):36-44. PubMed ID: 15088703 [TBL] [Abstract][Full Text] [Related]
8. Estimation of aerosol droplet sizes by using a modified DC-III portable droplet measurement system under laboratory and field conditions. Dennett JA; Stark PM; Vessey NY; Parsons RE; Bueno R J Am Mosq Control Assoc; 2006 Dec; 22(4):707-17. PubMed ID: 17304941 [TBL] [Abstract][Full Text] [Related]
9. A review of ultralow-volume aerial sprays of insecticide for mosquito control. Mount GA; Biery TL; Haile DG J Am Mosq Control Assoc; 1996 Dec; 12(4):601-18. PubMed ID: 9046465 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of ultra-low-volume insecticide dispensing systems for use in single-engined aircraft and their effectiveness against Aedes aegypti populations in South-East Asia. Kilpatrick JW; Tonn RJ; Jatanasen S Bull World Health Organ; 1970; 42(1):1-14. PubMed ID: 5309517 [TBL] [Abstract][Full Text] [Related]
11. Optimizing an aerial spray for mosquito control. Brown JR; Mickle RE; Yates M; Zhai J J Am Mosq Control Assoc; 2003 Sep; 19(3):243-50. PubMed ID: 14524546 [TBL] [Abstract][Full Text] [Related]
12. Rotary and High-Pressure Nozzle Spray Plume Droplet Analysis For Aerially Applied Mosquito Adulticides: Laser Diffraction Characterization. Hornby JA; Robinson J; Sterling M J Am Mosq Control Assoc; 2017 Mar; 33(1):43-49. PubMed ID: 28388318 [TBL] [Abstract][Full Text] [Related]
13. Classification of spray nozzles based on droplet size distributions and wind tunnel tests. De Schamphelerie M; Spanoghe P; Nuyttens D; Baetens K; Cornelis W; Gabriels D; Van der Meeren P Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):201-7. PubMed ID: 17390794 [TBL] [Abstract][Full Text] [Related]
14. Direct and indirect drift assessment means. Part 1: PDPA laser based droplet characterisation. Nuyttens D; Baetens K; De Schampheleire M; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):749-56. PubMed ID: 19226824 [TBL] [Abstract][Full Text] [Related]
15. The effect of air support on droplet characteristics and spray drift. Nuyttens D; Dekeyser D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426 [TBL] [Abstract][Full Text] [Related]
16. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
17. A Technical Review of MULV-Disp, a Recent Mosquito Ultra-Low Volume Pesticide Spray Dispersion Model. Teske ME; Thistle HW; Bonds JA J Am Mosq Control Assoc; 2015 Sep; 31(3):262-70. PubMed ID: 26375908 [TBL] [Abstract][Full Text] [Related]
18. Spray characterization of ultra-low-volume sprayers typically used in vector control. Hoffmann WC; Walker TW; Fritz BK; Farooq M; Smith VL; Robinson CA; Szumlas D; Lan Y J Am Mosq Control Assoc; 2009 Sep; 25(3):332-7. PubMed ID: 19852224 [TBL] [Abstract][Full Text] [Related]
19. Operational note indoor low-volume spray trials: handheld equipment evaluation. Brown JR; Williams DC; Gwinn TA; Presley SH; Beavers GM J Am Mosq Control Assoc; 2002 Sep; 18(3):232-5. PubMed ID: 12322948 [TBL] [Abstract][Full Text] [Related]
20. 1968 field trials of low volume spray applications. Kauffman EE Proc Pap Annu Conf Calif Mosq Control Assoc; 1969 Jan; 37():153-4. PubMed ID: 5379911 [No Abstract] [Full Text] [Related] [Next] [New Search]