These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20085253)

  • 1. Environmental life cycle comparison of algae to other bioenergy feedstocks.
    Clarens AF; Resurreccion EP; White MA; Colosi LM
    Environ Sci Technol; 2010 Mar; 44(5):1813-9. PubMed ID: 20085253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Environmental life cycle comparison of algae to other bioenergy feedstocks".
    Starbuck CM
    Environ Sci Technol; 2011 Jan; 45(2):833; author reply 834. PubMed ID: 21117689
    [No Abstract]   [Full Text] [Related]  

  • 3. Comment on "environmental life cycle comparison of algae to other bioenergy feedstocks".
    Subhadra BG
    Environ Sci Technol; 2010 May; 44(9):3641-2; author reply 3643. PubMed ID: 20380470
    [No Abstract]   [Full Text] [Related]  

  • 4. Environmental impacts of algae-derived biodiesel and bioelectricity for transportation.
    Clarens AF; Nassau H; Resurreccion EP; White MA; Colosi LM
    Environ Sci Technol; 2011 Sep; 45(17):7554-60. PubMed ID: 21774477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.
    Resurreccion EP; Colosi LM; White MA; Clarens AF
    Bioresour Technol; 2012 Dec; 126():298-306. PubMed ID: 23117186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.
    Schmer MR; Vogel KP; Varvel GE; Follett RF; Mitchell RB; Jin VL
    PLoS One; 2014; 9(3):e89501. PubMed ID: 24594783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.
    Kim S; Dale BE
    Environ Sci Technol; 2008 Oct; 42(20):7690-5. PubMed ID: 18983094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia.
    Sparrevik M; Field JL; Martinsen V; Breedveld GD; Cornelissen G
    Environ Sci Technol; 2013 Feb; 47(3):1206-15. PubMed ID: 23272937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental assessment of two different crop systems in terms of biomethane potential production.
    Bacenetti J; Fusi A; Negri M; Guidetti R; Fiala M
    Sci Total Environ; 2014 Jan; 466-467():1066-77. PubMed ID: 23994820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of maize cultivation and biomass utilization in northern Thailand.
    Supasri T; Itsubo N; Gheewala SH; Sampattagul S
    Sci Rep; 2020 Feb; 10(1):3516. PubMed ID: 32103142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of biodiesel production from microalgae in ponds.
    Campbell PK; Beer T; Batten D
    Bioresour Technol; 2011 Jan; 102(1):50-6. PubMed ID: 20594828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimizing land use and nitrogen intensity of bioenergy.
    Miller SA
    Environ Sci Technol; 2010 May; 44(10):3932-9. PubMed ID: 20420363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework.
    Zucaro A; Forte A; Fagnano M; Bastianoni S; Basosi R; Fierro A
    Integr Environ Assess Manag; 2015 Jul; 11(3):397-403. PubMed ID: 25377476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction.
    Liu X; Saydah B; Eranki P; Colosi LM; Greg Mitchell B; Rhodes J; Clarens AF
    Bioresour Technol; 2013 Nov; 148():163-71. PubMed ID: 24045203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of net greenhouse gas balance using crop- and soil-based approaches: two case studies.
    Huang J; Chen Y; Sui P; Gao W
    Sci Total Environ; 2013 Jul; 456-457():299-306. PubMed ID: 23619090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle of the corn-soybean agroecosystem for biobased production.
    Landis AE; Miller SA; Theis TL
    Environ Sci Technol; 2007 Feb; 41(4):1457-64. PubMed ID: 17593757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems.
    Nguyen TT; Doreau M; Eugène M; Corson MS; Garcia-Launay F; Chesneau G; van der Werf HM
    Animal; 2013 May; 7(5):860-9. PubMed ID: 23190866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)-potato (Solanum tuberosum L.) rotation.
    Haile-Mariam S; Collins HP; Higgins SS
    J Environ Qual; 2008; 37(3):759-71. PubMed ID: 18453396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola.
    Strange A; Park J; Bennett R; Phipps R
    Plant Biotechnol J; 2008 May; 6(4):337-45. PubMed ID: 18298428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.