These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20085570)

  • 41. Detection of vascular access stenosis by measurement of access blood flow from ionic dialysance.
    Mercadal L; Challier E; Cluzel P; Hamani A; Boulechfar H; Boukhalfa Z; Izzedine H; Bassilios N; Barrou B; Deray G; Petitclerc T
    Blood Purif; 2002; 20(2):177-81. PubMed ID: 11818682
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substitution-rate based screening model to assess stenosis progression in experimental stenotic arteriovenous grafts.
    Kan CD; Chen WL; Lin CH; Wu MJ; Mai YC
    Technol Health Care; 2017 Oct; 25(5):887-902. PubMed ID: 28854521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship between dialysis graft pressure and stenosis.
    Sullivan KL; Besarab A; Dorrell S; Moritz MJ
    Invest Radiol; 1992 May; 27(5):352-5. PubMed ID: 1582817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Turbulent flow evaluation of the venous needle during hemodialysis.
    Unnikrishnan S; Huynh TN; Brott BC; Ito Y; Cheng CH; Shih AM; Allon M; Anayiotos AS
    J Biomech Eng; 2005 Dec; 127(7):1141-6. PubMed ID: 16502656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of novel geometry-independent method for dialysis access pressure-flow monitoring.
    Weitzel WF; Cotant CL; Wen Z; Biswas R; Patel P; Panduranga H; Gianchandani YB; Rubin JM
    Theor Biol Med Model; 2008 Nov; 5():22. PubMed ID: 18986548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An equivalent astable multivibrator model to assess flow instability and dysfunction risk in in-vitro stenotic arteriovenous grafts.
    Lin CH; Kan CD; Chen WL; Wu MJ; Yu FM
    Technol Health Care; 2016 May; 24(3):295-308. PubMed ID: 26835723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Model of the Arterial and Venous Needle During Hemodialysis.
    Fulker D; Simmons A; Barber T
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27537240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New needle for two needle hemodialysis.
    Zarate AR
    ASAIO J; 1998; 44(5):M549-54. PubMed ID: 9804492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical evaluation and experimental validation of vascular access stenosis estimation.
    Chen W; Kan CD; Kao RH
    Technol Health Care; 2015; 24 Suppl 1():S245-52. PubMed ID: 26684568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Hemodynamic Effects of Hemodialysis Needle Rotation and Orientation in an Idealized Computational Model.
    Fulker D; Simmons A; Kabir K; Kark L; Barber T
    Artif Organs; 2016 Feb; 40(2):185-9. PubMed ID: 26011083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blood recirculation during hemodialysis with a coaxial counterflow single needle blood access catheter.
    Ogden DA; Cohen IM
    Trans Am Soc Artif Intern Organs; 1979; 25():325-7. PubMed ID: 524599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blood flow rate and access recirculation in hemodialysis.
    Daniels ID; Berlyne GM; Barth RH
    Int J Artif Organs; 1992 Aug; 15(8):470-4. PubMed ID: 1399095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hemodynamic effects of acute experimental aortic coarctation in the dog.
    Newman DL; Walesby RK; Bowden NL
    Circ Res; 1975 Jan; 36(1):165-72. PubMed ID: 1116217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrodynamic Approach for Revealing Venous Anastomotic Stenosis Formation Within a Dialysis Arteriovenous Graft.
    Sano Y; Ugawa T; Takeda A; Hyakutake T; Nakazawa T; Yanase S; Shigemitsu H; Arai H
    ASAIO J; 2021 Dec; 67(12):1269-1276. PubMed ID: 34860183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flow characteristics around proximal and distal stenoses in a series of tandem stenosed vessels.
    Huh HK; Choi WR; Ha H; Lee SJ
    J Biomech; 2016 Sep; 49(13):2960-2967. PubMed ID: 27497502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Review of Experimental Modelling in Vascular Access for Hemodialysis.
    Drost S; Alam N; Houston JG; Newport D
    Cardiovasc Eng Technol; 2017 Sep; 8(3):330-341. PubMed ID: 28567580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phasic flow patterns at a hemodialysis venous anastomosis.
    Shu MC; Noon GP; Hwang NH
    Biorheology; 1987; 24(6):711-22. PubMed ID: 3502767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hemodialysis efficiency management from the viewpoint of blood removal pressure.
    Kashima Y; Ninomiya S
    Ther Apher Dial; 2021 Apr; 25(2):152-159. PubMed ID: 32618067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of pressure losses in the hemodialysis graft vascular circuit using finite element analysis.
    Beasley MP; Conrad SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():998-1001. PubMed ID: 18002128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Complications of Vascular Access in Hemodialysis.
    Masud A; Costanzo EJ; Zuckerman R; Asif A
    Semin Thromb Hemost; 2018 Feb; 44(1):57-59. PubMed ID: 28898900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.