BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 20085629)

  • 1. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome.
    Jones BV; Sun F; Marchesi JR
    BMC Genomics; 2010 Jan; 11():46. PubMed ID: 20085629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human gut mobile metagenome: a metazoan perspective.
    Jones BV
    Gut Microbes; 2010; 1(6):415-31. PubMed ID: 21468227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome.
    Jones BV; Marchesi JR
    Nat Methods; 2007 Jan; 4(1):55-61. PubMed ID: 17128268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut.
    Suzuki Y; Nishijima S; Furuta Y; Yoshimura J; Suda W; Oshima K; Hattori M; Morishita S
    Microbiome; 2019 Aug; 7(1):119. PubMed ID: 31455406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative (meta)genomic analysis and ecological profiling of human gut-specific bacteriophage φB124-14.
    Ogilvie LA; Caplin J; Dedi C; Diston D; Cheek E; Bowler L; Taylor H; Ebdon J; Jones BV
    PLoS One; 2012; 7(4):e35053. PubMed ID: 22558115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses.
    Chung YW; Gwak HJ; Moon S; Rho M; Ryu JH
    PLoS One; 2020; 15(1):e0227886. PubMed ID: 31978162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome.
    Ogilvie LA; Firouzmand S; Jones BV
    Bioeng Bugs; 2012 Jan; 3(1):13-31. PubMed ID: 22126801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities.
    Yildirim S; Yeoman CJ; Sipos M; Torralba M; Wilson BA; Goldberg TL; Stumpf RM; Leigh SR; White BA; Nelson KE
    PLoS One; 2010 Nov; 5(11):e13963. PubMed ID: 21103066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.
    Zhang T; Zhang XX; Ye L
    PLoS One; 2011; 6(10):e26041. PubMed ID: 22016806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative fecal metagenomics unveils unique functional capacity of the swine gut.
    Lamendella R; Domingo JW; Ghosh S; Martinson J; Oerther DB
    BMC Microbiol; 2011 May; 11():103. PubMed ID: 21575148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the grass carp gut microbiome and its effect on metabolism.
    Ni J; Yan Q; Yu Y; Zhang T
    FEMS Microbiol Ecol; 2014 Mar; 87(3):704-14. PubMed ID: 24256454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.
    Jones BV; Begley M; Hill C; Gahan CG; Marchesi JR
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13580-5. PubMed ID: 18757757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes.
    Grønlund H; Gerdes K
    J Mol Biol; 1999 Jan; 285(4):1401-15. PubMed ID: 9917385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation.
    Cuscó A; Pérez D; Viñes J; Fàbregas N; Francino O
    Microb Genom; 2022 Mar; 8(3):. PubMed ID: 35298370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures.
    Krawczyk PS; Lipinski L; Dziembowski A
    Nucleic Acids Res; 2018 Apr; 46(6):e35. PubMed ID: 29346586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation.
    Beaulaurier J; Zhu S; Deikus G; Mogno I; Zhang XS; Davis-Richardson A; Canepa R; Triplett EW; Faith JJ; Sebra R; Schadt EE; Fang G
    Nat Biotechnol; 2018 Jan; 36(1):61-69. PubMed ID: 29227468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus.
    Singh A; Singh DP; Tiwari R; Kumar K; Singh RV; Singh S; Prasanna R; Saxena AK; Nain L
    Microbiol Res; 2015 Jun; 175():48-56. PubMed ID: 25813857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faecal microbiome sequences in relation to the egg-laying performance of hens using amplicon-based metagenomic association analysis.
    Elokil AA; Magdy M; Melak S; Ishfaq H; Bhuiyan A; Cui L; Jamil M; Zhao S; Li S
    Animal; 2020 Apr; 14(4):706-715. PubMed ID: 31619307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications.
    Shi W; Xie S; Chen X; Sun S; Zhou X; Liu L; Gao P; Kyrpides NC; No EG; Yuan JS
    PLoS Genet; 2013; 9(1):e1003131. PubMed ID: 23326236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.