BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20085716)

  • 1. Role of protein interactions in defining HIV-1 viral capsid shape and stability: a coarse-grained analysis.
    Krishna V; Ayton GS; Voth GA
    Biophys J; 2010 Jan; 98(1):18-26. PubMed ID: 20085716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics.
    Zhao G; Perilla JR; Yufenyuy EL; Meng X; Chen B; Ning J; Ahn J; Gronenborn AM; Schulten K; Aiken C; Zhang P
    Nature; 2013 May; 497(7451):643-6. PubMed ID: 23719463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and flexibility of conical HIV-1 capsids determined within intact virions.
    Mattei S; Glass B; Hagen WJ; Kräusslich HG; Briggs JA
    Science; 2016 Dec; 354(6318):1434-1437. PubMed ID: 27980210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated self-assembly of the HIV-1 capsid: protein shape and native contacts are sufficient for two-dimensional lattice formation.
    Chen B; Tycko R
    Biophys J; 2011 Jun; 100(12):3035-44. PubMed ID: 21689538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early stages of the HIV-1 capsid protein lattice formation.
    Grime JM; Voth GA
    Biophys J; 2012 Oct; 103(8):1774-83. PubMed ID: 23083721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling global changes induced by local perturbations to the HIV-1 capsid.
    Bergman S; Lezon TR
    J Mol Graph Model; 2017 Jan; 71():218-226. PubMed ID: 27951510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A.
    Ni T; Gerard S; Zhao G; Dent K; Ning J; Zhou J; Shi J; Anderson-Daniels J; Li W; Jang S; Engelman AN; Aiken C; Zhang P
    Nat Struct Mol Biol; 2020 Sep; 27(9):855-862. PubMed ID: 32747784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of full-length HIV-1 CA: a model for the mature capsid lattice.
    Ganser-Pornillos BK; Cheng A; Yeager M
    Cell; 2007 Oct; 131(1):70-9. PubMed ID: 17923088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of polyhedral shells: a molecular dynamics study.
    Rapaport DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051905. PubMed ID: 15600654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-atom normal mode dynamics of HIV-1 capsid.
    Na H; Song G
    PLoS Comput Biol; 2018 Sep; 14(9):e1006456. PubMed ID: 30226840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray structures of the hexameric building block of the HIV capsid.
    Pornillos O; Ganser-Pornillos BK; Kelly BN; Hua Y; Whitby FG; Stout CD; Sundquist WI; Hill CP; Yeager M
    Cell; 2009 Jun; 137(7):1282-92. PubMed ID: 19523676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elasticity theory and shape transitions of viral shells.
    Nguyen TT; Bruinsma RF; Gelbart WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051923. PubMed ID: 16383661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR.
    Lu M; Russell RW; Bryer AJ; Quinn CM; Hou G; Zhang H; Schwieters CD; Perilla JR; Gronenborn AM; Polenova T
    Nat Struct Mol Biol; 2020 Sep; 27(9):863-869. PubMed ID: 32901160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image reconstructions of helical assemblies of the HIV-1 CA protein.
    Li S; Hill CP; Sundquist WI; Finch JT
    Nature; 2000 Sep; 407(6802):409-13. PubMed ID: 11014200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein.
    Bartonova V; Igonet S; Sticht J; Glass B; Habermann A; Vaney MC; Sehr P; Lewis J; Rey FA; Kraüsslich HG
    J Biol Chem; 2008 Nov; 283(46):32024-33. PubMed ID: 18772135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MxB Restricts HIV-1 by Targeting the Tri-hexamer Interface of the Viral Capsid.
    Smaga SS; Xu C; Summers BJ; Digianantonio KM; Perilla JR; Xiong Y
    Structure; 2019 Aug; 27(8):1234-1245.e5. PubMed ID: 31155311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter Optimization for Interaction between C-Terminal Domains of HIV-1 Capsid Protein.
    Sha H; Zhu F
    J Chem Inf Model; 2017 May; 57(5):1134-1141. PubMed ID: 28426204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of in vitro symmetric complexes and analysis by hybrid methods reveal mechanisms of HIV capsid assembly.
    Yeager M
    J Mol Biol; 2011 Jul; 410(4):534-52. PubMed ID: 21762799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly properties of the human immunodeficiency virus type 1 CA protein.
    Ganser-Pornillos BK; von Schwedler UK; Stray KM; Aiken C; Sundquist WI
    J Virol; 2004 Mar; 78(5):2545-52. PubMed ID: 14963157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6.
    Bhattacharya A; Alam SL; Fricke T; Zadrozny K; Sedzicki J; Taylor AB; Demeler B; Pornillos O; Ganser-Pornillos BK; Diaz-Griffero F; Ivanov DN; Yeager M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18625-30. PubMed ID: 25518861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.