BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 20086171)

  • 21. Carbon source metabolism and its regulation in cancer cells.
    Yin C; Qie S; Sang N
    Crit Rev Eukaryot Gene Expr; 2012; 22(1):17-35. PubMed ID: 22339657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An extended Myc network contributes to glucose homeostasis in cancer and diabetes.
    Peterson CW; Ayer DE
    Front Biosci (Landmark Ed); 2011 Jun; 16(6):2206-23. PubMed ID: 21622171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein.
    Xiong J; Du Q; Liang Z
    Oncogene; 2010 Sep; 29(35):4980-8. PubMed ID: 20562918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and analysis of the regulatory network of Myc and microRNAs from high-throughput experimental data.
    Xiong L; Jiang W; Zhou R; Mao C; Guo Z
    Comput Biol Med; 2013 Sep; 43(9):1252-60. PubMed ID: 23930820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer.
    DeBerardinis RJ; Cheng T
    Oncogene; 2010 Jan; 29(3):313-24. PubMed ID: 19881548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells.
    Chen Z; Wang Y; Warden C; Chen S
    J Steroid Biochem Mol Biol; 2015 May; 149():118-27. PubMed ID: 25683269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNAs as regulators and mediators of c-MYC function.
    Jackstadt R; Hermeking H
    Biochim Biophys Acta; 2015 May; 1849(5):544-53. PubMed ID: 24727092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction.
    Fogal V; Babic I; Chao Y; Pastorino S; Mukthavaram R; Jiang P; Cho YJ; Pingle SC; Crawford JR; Piccioni DE; Kesari S
    Oncotarget; 2015 Jan; 6(2):1157-70. PubMed ID: 25528767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myc requires RhoA/SRF to reprogram glutamine metabolism.
    Haikala HM; Marques E; Turunen M; Klefström J
    Small GTPases; 2018 May; 9(3):274-282. PubMed ID: 27532209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular determinants of de novo nucleotide biosynthesis in cancer cells.
    Tong X; Zhao F; Thompson CB
    Curr Opin Genet Dev; 2009 Feb; 19(1):32-7. PubMed ID: 19201187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach.
    Chen L; Cui H
    Int J Mol Sci; 2015 Sep; 16(9):22830-55. PubMed ID: 26402672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p53 represses c-Myc through induction of the tumor suppressor miR-145.
    Sachdeva M; Zhu S; Wu F; Wu H; Walia V; Kumar S; Elble R; Watabe K; Mo YY
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3207-12. PubMed ID: 19202062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MYC and metabolism on the path to cancer.
    Hsieh AL; Walton ZE; Altman BJ; Stine ZE; Dang CV
    Semin Cell Dev Biol; 2015 Jul; 43():11-21. PubMed ID: 26277543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NF-κB member p65 controls glutamine metabolism through miR-23a.
    Rathore MG; Saumet A; Rossi JF; de Bettignies C; Tempé D; Lecellier CH; Villalba M
    Int J Biochem Cell Biol; 2012 Sep; 44(9):1448-56. PubMed ID: 22634383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mammalian Target of Rapamycin 2 (MTOR2) and C-MYC Modulate Glucosamine-6-Phosphate Synthesis in Glioblastoma (GBM) Cells Through Glutamine: Fructose-6-Phosphate Aminotransferase 1 (GFAT1).
    Liu B; Huang ZB; Chen X; See YX; Chen ZK; Yao HK
    Cell Mol Neurobiol; 2019 Apr; 39(3):415-434. PubMed ID: 30771196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MYC sensitises cells to apoptosis by driving energetic demand.
    Edwards-Hicks J; Su H; Mangolini M; Yoneten KK; Wills J; Rodriguez-Blanco G; Young C; Cho K; Barker H; Muir M; Guerrieri AN; Li XF; White R; Manasterski P; Mandrou E; Wills K; Chen J; Abraham E; Sateri K; Qian BZ; Bankhead P; Arends M; Gammoh N; von Kriegsheim A; Patti GJ; Sims AH; Acosta JC; Brunton V; Kranc KR; Christophorou M; Pearce EL; Ringshausen I; Finch AJ
    Nat Commun; 2022 Aug; 13(1):4674. PubMed ID: 35945217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Widespread microRNA repression by Myc contributes to tumorigenesis.
    Chang TC; Yu D; Lee YS; Wentzel EA; Arking DE; West KM; Dang CV; Thomas-Tikhonenko A; Mendell JT
    Nat Genet; 2008 Jan; 40(1):43-50. PubMed ID: 18066065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy.
    Wang G; Wang J; Zhao H; Wang J; Tony To SS
    Arch Biochem Biophys; 2015 Aug; 580():84-92. PubMed ID: 26151775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miR-145 inhibits glutamine metabolism through c-myc/GLS1 pathways in ovarian cancer cells.
    Li J; Li X; Wu L; Pei M; Li H; Jiang Y
    Cell Biol Int; 2019 Aug; 43(8):921-930. PubMed ID: 31115975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miR-296-3p Negatively Regulated by Nicotine Stimulates Cytoplasmic Translocation of c-Myc via MK2 to Suppress Chemotherapy Resistance.
    Deng X; Liu Z; Liu X; Fu Q; Deng T; Lu J; Liu Y; Liang Z; Jiang Q; Cheng C; Fang W
    Mol Ther; 2018 Apr; 26(4):1066-1081. PubMed ID: 29525743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.