These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20087406)

  • 21. Association testing strategy for data from dense marker panels.
    Lee D; Bacanu SA
    PLoS One; 2013; 8(11):e80540. PubMed ID: 24265830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the genome-wide analysis of copy number variants in family-based designs: methods for combining family-based and population-based information for testing dichotomous or quantitative traits, or completely ascertained samples.
    Murphy A; Won S; Rogers A; Chu JH; Raby BA; Lange C
    Genet Epidemiol; 2010 Sep; 34(6):582-90. PubMed ID: 20718041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A systematic search for SNPs/haplotypes associated with disease phenotypes using a haplotype-based stepwise procedure.
    Yang Y; Li SS; Chien JW; Andriesen J; Zhao LP
    BMC Genet; 2008 Dec; 9():90. PubMed ID: 19102730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FBAT-SNP-PC: an approach for multiple markers and single trait in family-based association tests.
    Rakovski CS; Weiss ST; Laird NM; Lange C
    Hum Hered; 2008; 66(2):122-6. PubMed ID: 18382091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.
    Yang JJ; Li J; Williams LK; Buu A
    BMC Bioinformatics; 2016 Jan; 17():19. PubMed ID: 26729364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association analysis of novel TBX21 variants with asthma phenotypes.
    Chung HT; Kim LH; Park BL; Lee JH; Park HS; Choi BW; Hong SJ; Chae SC; Kim JJ; Park CS; Shin HD
    Hum Mutat; 2003 Sep; 22(3):257. PubMed ID: 12938094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide association study of inflorescence length of cultivated soybean based on the high-throughout single-nucleotide markers.
    Wang J; Zhao X; Wang W; Qu Y; Teng W; Qiu L; Zheng H; Han Y; Li W
    Mol Genet Genomics; 2019 Jun; 294(3):607-620. PubMed ID: 30739204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analyses of associations with asthma in four asthma population samples from Canada and Australia.
    Daley D; Lemire M; Akhabir L; Chan-Yeung M; He JQ; McDonald T; Sandford A; Stefanowicz D; Tripp B; Zamar D; Bosse Y; Ferretti V; Montpetit A; Tessier MC; Becker A; Kozyrskyj AL; Beilby J; McCaskie PA; Musk B; Warrington N; James A; Laprise C; Palmer LJ; Paré PD; Hudson TJ
    Hum Genet; 2009 May; 125(4):445-59. PubMed ID: 19247692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joint analysis of tightly linked SNPs in screening step of genome-wide association studies leads to increased power.
    Becker T; Herold C
    Eur J Hum Genet; 2009 Aug; 17(8):1043-9. PubMed ID: 19223937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Haplotype analysis of
    Vishweswaraiah S; Ramachandra NB; Jayaraj BS; Holla AD; Chakraborty S; Agrawal A; Mahesh PA
    Indian J Med Res; 2019 Sep; 150(3):272-281. PubMed ID: 31719298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powerful rare variant association testing in a copula-based joint analysis of multiple phenotypes.
    Konigorski S; Yilmaz YE; Janke J; Bergmann MM; Boeing H; Pischon T
    Genet Epidemiol; 2020 Jan; 44(1):26-40. PubMed ID: 31732979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic screening and replication using the same data set in family-based association testing.
    Van Steen K; McQueen MB; Herbert A; Raby B; Lyon H; Demeo DL; Murphy A; Su J; Datta S; Rosenow C; Christman M; Silverman EK; Laird NM; Weiss ST; Lange C
    Nat Genet; 2005 Jul; 37(7):683-91. PubMed ID: 15937480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ADAM33 polymorphisms and phenotype associations in childhood asthma.
    Raby BA; Silverman EK; Kwiatkowski DJ; Lange C; Lazarus R; Weiss ST
    J Allergy Clin Immunol; 2004 Jun; 113(6):1071-8. PubMed ID: 15208587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fine mapping functional sites or regions from case-control data using haplotypes of multiple linked SNPs.
    Cheng R; Ma JZ; Elston RC; Li MD
    Ann Hum Genet; 2005 Jan; 69(Pt 1):102-12. PubMed ID: 15638831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Testing association between disease and multiple SNPs in a candidate gene.
    Gauderman WJ; Murcray C; Gilliland F; Conti DV
    Genet Epidemiol; 2007 Jul; 31(5):383-95. PubMed ID: 17410554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal.
    Li M; Boehnke M; Abecasis GR
    Am J Hum Genet; 2005 Jun; 76(6):934-49. PubMed ID: 15877278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrative modeling of multiple genomic data from different types of genetic association studies.
    Huang YT
    Biostatistics; 2014 Oct; 15(4):587-602. PubMed ID: 24705142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing methods for assigning SNPs to genes in gene-based tests of association using common variants.
    Petersen A; Alvarez C; DeClaire S; Tintle NL
    PLoS One; 2013; 8(5):e62161. PubMed ID: 23741293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A robust TDT-type association test under informative parental missingness.
    Chen JH; Cheng KF
    Stat Med; 2011 Feb; 30(3):291-7. PubMed ID: 20963765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixture SNPs effect on phenotype in genome-wide association studies.
    Wang L; Shen H; Liu H; Guo G
    BMC Genomics; 2015 Feb; 16(1):3. PubMed ID: 25649116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.