These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20087458)

  • 1. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review.
    Cao BY; Sun J; Chen M; Guo ZY
    Int J Mol Sci; 2009 Oct; 10(11):4638-4706. PubMed ID: 20087458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS.
    Ekinci KL; Yakhot V; Rajauria S; Colosqui C; Karabacak DM
    Lab Chip; 2010 Nov; 10(22):3013-25. PubMed ID: 20862440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of Knudsen Layer Effects in the Micro-Scale Backward-Facing Step in the Slip Flow Regime.
    Bhagat A; Gijare H; Dongari N
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30759853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D heterostructures and systems for novel MEMS/NEMS.
    Yakovlevich Prinz V; Alexandrovich Seleznev V; Victorovich Prinz A; Vladimirovich Kopylov A
    Sci Technol Adv Mater; 2009 Jun; 10(3):034502. PubMed ID: 27877295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives on C-MEMS and C-NEMS biotech applications.
    Forouzanfar S; Pala N; Madou M; Wang C
    Biosens Bioelectron; 2021 May; 180():113119. PubMed ID: 33711652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the rate of water translocation through carbon nanotubes.
    Qin X; Yuan Q; Zhao Y; Xie S; Liu Z
    Nano Lett; 2011 May; 11(5):2173-7. PubMed ID: 21462938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger.
    Sun H; Li F; Wang M; Xin G; Wang X
    RSC Adv; 2020 Jun; 10(39):23097-23107. PubMed ID: 35520315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface roughness on shear viscosity.
    Papanikolaou M; Frank M; Drikakis D
    Phys Rev E; 2017 Mar; 95(3-1):033108. PubMed ID: 28415275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip effects in polymer thin films.
    Bäumchen O; Jacobs K
    J Phys Condens Matter; 2010 Jan; 22(3):033102. PubMed ID: 21386275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopumping using carbon nanotubes.
    Insepov Z; Wolf D; Hassanein A
    Nano Lett; 2006 Sep; 6(9):1893-5. PubMed ID: 16967997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water electrolyte transport through corrugated carbon nanopores.
    Moghimi Kheirabadi A; Moosavi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012304. PubMed ID: 25122300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of interfacial resistances on gas transport through carbon nanotube membranes.
    Newsome DA; Sholl DS
    Nano Lett; 2006 Sep; 6(9):2150-3. PubMed ID: 16968042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets.
    Ganzhorn M; Klyatskaya S; Ruben M; Wernsdorfer W
    ACS Nano; 2013 Jul; 7(7):6225-36. PubMed ID: 23802618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-hundred GHz carbon nanotube nanoelectromechanical systems (NEMS).
    Island JO; Tayari V; McRae AC; Champagne AR
    Nano Lett; 2012 Sep; 12(9):4564-9. PubMed ID: 22888989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Maxwell velocity slip and Smoluchowski temperature slip on CNTs with modified Fourier theory: Reiner-Philippoff model.
    Sajid T; Jamshed W; Shahzad F; Aiyashi MA; Eid MR; Nisar KS; Shukla A
    PLoS One; 2021; 16(10):e0258367. PubMed ID: 34648551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.
    Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.