These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 20087526)
1. Role of catechol in the radical reduction of B-alkylcatecholboranes in presence of methanol. Povie G; Villa G; Ford L; Pozzi D; Schiesser CH; Renaud P Chem Commun (Camb); 2010 Feb; 46(5):803-5. PubMed ID: 20087526 [TBL] [Abstract][Full Text] [Related]
2. Radical chain reduction of alkylboron compounds with catechols. Villa G; Povie G; Renaud P J Am Chem Soc; 2011 Apr; 133(15):5913-20. PubMed ID: 21341798 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of unusual oxime ethers by reaction of tetranitromethane with B-alkylcatecholboranes. Lüthy M; Schenk K; Renaud P Chemistry; 2010 Sep; 16(33):10171-7. PubMed ID: 20645343 [TBL] [Abstract][Full Text] [Related]
4. A mild radical procedure for the reduction of B-alkylcatecholboranes to alkanes. Pozzi D; Scanlan EM; Renaud P J Am Chem Soc; 2005 Oct; 127(41):14204-5. PubMed ID: 16218613 [TBL] [Abstract][Full Text] [Related]
5. Kinetic study of the aroxyl radical-scavenging reaction of alpha-tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates. Ouchi A; Nagaoka S; Abe K; Mukai K J Phys Chem B; 2009 Oct; 113(40):13322-31. PubMed ID: 19754085 [TBL] [Abstract][Full Text] [Related]
6. Radical-mediated alkenylation, alkynylation, methanimination, and cyanation of B-alkylcatecholboranes. Schaffner AP; Darmency V; Renaud P Angew Chem Int Ed Engl; 2006 Sep; 45(35):5847-9. PubMed ID: 16888829 [No Abstract] [Full Text] [Related]
7. Reducing power of simple polyphenols by electron-transfer reactions using a new stable radical of the PTM series, tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl radical. Torres JL; Carreras A; Jiménez A; Brillas E; Torrelles X; Rius J; Juliá L J Org Chem; 2007 May; 72(10):3750-6. PubMed ID: 17439176 [TBL] [Abstract][Full Text] [Related]
8. Short and efficient synthesis of chiral furyl carbinols from carbohydrates. Boto A; Hernandez D; Hernandez R Org Lett; 2007 Apr; 9(9):1721-4. PubMed ID: 17397175 [TBL] [Abstract][Full Text] [Related]
9. Radicals from the gas-phase pyrolysis of catechol. 2. Comparison of the pyrolysis of catechol and hydroquinone. Khachatryan L; Asatryan R; McFerrin C; Adounkpe J; Dellinger B J Phys Chem A; 2010 Sep; 114(37):10110-6. PubMed ID: 20731470 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous two-hydrogen transfer as a mechanism for efficient CO(2) reduction. Zimmerman PM; Zhang Z; Musgrave CB Inorg Chem; 2010 Oct; 49(19):8724-8. PubMed ID: 20804148 [TBL] [Abstract][Full Text] [Related]
11. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. Cole EB; Lakkaraju PS; Rampulla DM; Morris AJ; Abelev E; Bocarsly AB J Am Chem Soc; 2010 Aug; 132(33):11539-51. PubMed ID: 20666494 [TBL] [Abstract][Full Text] [Related]
12. Effect of group II metal cations on catecholate oxidation. Lebedev AV; Ivanova MV; Timoshin AA; Ruuge EK Chemphyschem; 2007 Aug; 8(12):1863-9. PubMed ID: 17634998 [TBL] [Abstract][Full Text] [Related]
13. Catechol boronate formation and its electrochemical oxidation. Zhang L; Kerszulis JA; Clark RJ; Ye T; Zhu L Chem Commun (Camb); 2009 Apr; (16):2151-3. PubMed ID: 19360176 [TBL] [Abstract][Full Text] [Related]
14. Facile rearrangement of O-silylated oximes on reduction with boron trifluoride/borane. Ortiz-Marciales M; Rivera LD; De Jesús M; Espinosa S; Benjamin JA; Casanova OE; Figueroa IG; Rodríguez S; Correa W J Org Chem; 2005 Nov; 70(24):10132-4. PubMed ID: 16292855 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes. Chaudhuri P; Wieghardt K; Weyhermüller T; Paine TK; Mukherjee S; Mukherjee C Biol Chem; 2005 Oct; 386(10):1023-33. PubMed ID: 16218874 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis of methyl tert-butyl ether (MTBE). 2. Theoretical study of decomposition pathways. Zhang T; Zhang L; Wang J; Yuan T; Hong X; Qi F J Phys Chem A; 2008 Oct; 112(42):10495-501. PubMed ID: 18823102 [TBL] [Abstract][Full Text] [Related]
17. The influence of catechol structure on the suicide-inactivation of tyrosinase. Ramsden CA; Stratford MR; Riley PA Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891 [TBL] [Abstract][Full Text] [Related]
18. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+. Seacat AM; Kuppusamy P; Zweier JL; Yager JD Arch Biochem Biophys; 1997 Nov; 347(1):45-52. PubMed ID: 9344463 [TBL] [Abstract][Full Text] [Related]
19. A highly active phosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. Courtemanche MA; Légaré MA; Maron L; Fontaine FG J Am Chem Soc; 2013 Jun; 135(25):9326-9. PubMed ID: 23750670 [TBL] [Abstract][Full Text] [Related]
20. An opportunity for Mg-catalyzed Grignard-type reactions: direct coupling of benzylic halides with pinacolborane with 10 mol % of magnesium. Pintaric C; Olivero S; Gimbert Y; Chavant PY; Duñach E J Am Chem Soc; 2010 Sep; 132(34):11825-7. PubMed ID: 20687557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]