These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20088528)

  • 1. Cofabrication: a strategy for building multicomponent microsystems.
    Siegel AC; Tang SK; Nijhuis CA; Hashimoto M; Phillips ST; Dickey MD; Whitesides GM
    Acc Chem Res; 2010 Apr; 43(4):518-28. PubMed ID: 20088528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micropunching lithography for generating micro- and submicron-patterns on polymer substrates.
    Chakraborty A; Liu X; Luo C
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane).
    Siegel AC; Shevkoplyas SS; Weibel DB; Bruzewicz DA; Martinez AW; Whitesides GM
    Angew Chem Int Ed Engl; 2006 Oct; 45(41):6877-82. PubMed ID: 17001718
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of silicon and polymer substrates for fabrication of integrated microfluidic microsystems for DNA extraction and amplification.
    Gheorghe M; Blionas S; Ragoussis J; Galvin P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2482-5. PubMed ID: 17946117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated microfluidic systems.
    Kaneda S; Fujii T
    Adv Biochem Eng Biotechnol; 2010; 119():179-94. PubMed ID: 20535602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.
    Bhardwaj P; Bagdi P; Sen AK
    Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet Printed Polyethylene Glycol as a Fugitive Ink for the Fabrication of Flexible Microfluidic Systems.
    Alfadhel A; Ouyang J; Mahajan CG; Forouzandeh F; Cormier D; Borkholder DA
    Mater Des; 2018 Jul; 150():182-187. PubMed ID: 30364619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes.
    Ibanez-Garcia N; Mercader MB; Mendes da Rocha Z; Seabra CA; Góngora-Rubio MR; Chamarro JA
    Anal Chem; 2006 May; 78(9):2985-92. PubMed ID: 16642984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet based microfluidics.
    Seemann R; Brinkmann M; Pfohl T; Herminghaus S
    Rep Prog Phys; 2012 Jan; 75(1):016601. PubMed ID: 22790308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of microscale structures in enclosed microfluidic networks by using a magnetic beads based method.
    Wang Z; Zhang X; Yang J; Yang Z; Wan X; Hu N; Zheng X
    Anal Chim Acta; 2013 Aug; 792():66-71. PubMed ID: 23910969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of graphene electrodes for microsystems and microfluidic devices.
    Del Rosso M; Brodie CH; Ramalingam S; Cabral DM; Pensini E; Singh A; Collier CM
    Sci Rep; 2019 Apr; 9(1):5773. PubMed ID: 30962471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics.
    Zhao S; Cong H; Pan T
    Lab Chip; 2009 Apr; 9(8):1128-32. PubMed ID: 19350095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.