BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20088597)

  • 1. Double-layer mediated electromechanical response of amyloid fibrils in liquid environment.
    Nikiforov MP; Thompson GL; Reukov VV; Jesse S; Guo S; Rodriguez BJ; Seal K; Vertegel AA; Kalinin SV
    ACS Nano; 2010 Feb; 4(2):689-98. PubMed ID: 20088597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.
    Kalinin SV; Rodriguez BJ; Jesse S; Seal K; Proksch R; Hohlbauch S; Revenko I; Thompson GL; Vertegel AA
    Nanotechnology; 2007 Oct; 18(42):424020. PubMed ID: 21730453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical ordering of amyloid fibrils on the mica surface.
    Zhou X; Zhang Y; Zhang F; Pillai S; Liu J; Li R; Dai B; Li B; Zhang Y
    Nanoscale; 2013 Jun; 5(11):4816-22. PubMed ID: 23613010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomechanical properties of single amyloid fibrils.
    Sweers KK; Bennink ML; Subramaniam V
    J Phys Condens Matter; 2012 Jun; 24(24):243101. PubMed ID: 22585542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical deformation mechanisms and properties of amyloid fibrils.
    Choi B; Yoon G; Lee SW; Eom K
    Phys Chem Chem Phys; 2015 Jan; 17(2):1379-89. PubMed ID: 25426573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.
    Jiang P; Huang B; Wei L; Yan F; Huang X; Li Y; Xie S; Pan K; Liu Y; Li J
    Nanotechnology; 2019 May; 30(20):205703. PubMed ID: 30699396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear flow induces amyloid fibril formation.
    Hill EK; Krebs B; Goodall DG; Howlett GJ; Dunstan DE
    Biomacromolecules; 2006 Jan; 7(1):10-3. PubMed ID: 16398490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments.
    Cui A; Wolf P; Ye Y; Hu Z; Dujardin A; Huang Z; Jiang K; Shang L; Ye M; Sun H; Chu J
    Nanotechnology; 2019 Jun; 30(23):235701. PubMed ID: 30780144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency electromechanical imaging of ferroelectrics in a liquid environment.
    Balke N; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Jun; 6(6):5559-65. PubMed ID: 22571634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils.
    Lee G; Lee W; Baik S; Kim YH; Eom K; Kwon T
    Nanotechnology; 2018 Jul; 29(29):295701. PubMed ID: 29644980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Force Microscopy Characterization of Protein Fibrils Formed by the Amyloidogenic Region of the Bacterial Protein MinE on Mica and a Supported Lipid Bilayer.
    Chiang YL; Chang YC; Chiang IC; Mak HM; Hwang IS; Shih YL
    PLoS One; 2015; 10(11):e0142506. PubMed ID: 26562523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils.
    Lamour G; Nassar R; Chan PHW; Bozkurt G; Li J; Bui JM; Yip CK; Mayor T; Li H; Wu H; Gsponer JA
    Biophys J; 2017 Feb; 112(4):584-594. PubMed ID: 28256219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional nanoscale structural and functional imaging in individual collagen type I fibrils.
    Harnagea C; Vallières M; Pfeffer CP; Wu D; Olsen BR; Pignolet A; Légaré F; Gruverman A
    Biophys J; 2010 Jun; 98(12):3070-7. PubMed ID: 20550920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing local electromechanical effects in highly conductive electrolytes.
    Balke N; Tselev A; Arruda TM; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Nov; 6(11):10139-46. PubMed ID: 23106854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A decade of piezoresponse force microscopy: progress, challenges, and opportunities.
    Kalinin SV; Rar A; Jesse S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2226-52. PubMed ID: 17186903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.
    Choi H; Chang HJ; Lee M; Na S
    Chemphyschem; 2017 Apr; 18(7):817-827. PubMed ID: 28160391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongation dynamics of amyloid fibrils: a rugged energy landscape picture.
    Lee CF; Loken J; Jean L; Vaux DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041906. PubMed ID: 19905341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.