These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20088597)

  • 21. Watching amyloid fibrils grow by time-lapse atomic force microscopy.
    Goldsbury C; Kistler J; Aebi U; Arvinte T; Cooper GJ
    J Mol Biol; 1999 Jan; 285(1):33-9. PubMed ID: 9878384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Are amyloid fibrils molecular spandrels?
    Hane F
    FEBS Lett; 2013 Nov; 587(22):3617-9. PubMed ID: 24140343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncooperative dimethyl sulfoxide-induced dissection of insulin fibrils: toward soluble building blocks of amyloid.
    Loksztejn A; Dzwolak W
    Biochemistry; 2009 Jun; 48(22):4846-51. PubMed ID: 19385641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amyloid Fibrils from Hemoglobin.
    Jayawardena N; Kaur M; Nair S; Malmstrom J; Goldstone D; Negron L; Gerrard JA; Domigan LJ
    Biomolecules; 2017 Apr; 7(2):. PubMed ID: 28398221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by β-lactoglobulin.
    Ma B; Xie J; Wei L; Li W
    Int J Biol Macromol; 2013 Feb; 53():82-7. PubMed ID: 23148946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces.
    Sharp JS; Forrest JA; Jones RA
    Biochemistry; 2002 Dec; 41(52):15810-9. PubMed ID: 12501210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images.
    Adamcik J; Jung JM; Flakowski J; De Los Rios P; Dietler G; Mezzenga R
    Nat Nanotechnol; 2010 Jun; 5(6):423-8. PubMed ID: 20383125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy.
    Gladytz A; Lugovoy E; Charvat A; Häupl T; Siefermann KR; Abel B
    Phys Chem Chem Phys; 2015 Jan; 17(2):918-27. PubMed ID: 25408431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Master and slave relationship between two types of self-propagating insulin amyloid fibrils.
    Surmacz-Chwedoruk W; Babenko V; Dzwolak W
    J Phys Chem B; 2014 Nov; 118(47):13582-9. PubMed ID: 25373010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K.
    Chen Y; Tang C; Xing Z; Zhang J; Qiu F
    J Pept Sci; 2013 Nov; 19(11):708-16. PubMed ID: 24105725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
    Sasaki N; Saitoh Y; Sharma RK; Furusawa K
    Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-lapse atomic force microscopy in the characterization of amyloid-like fibril assembly and oligomeric intermediates.
    Goldsbury C; Green J
    Methods Mol Biol; 2005; 299():103-28. PubMed ID: 15980598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy.
    Jesse S; Guo S; Kumar A; Rodriguez BJ; Proksch R; Kalinin SV
    Nanotechnology; 2010 Oct; 21(40):405703. PubMed ID: 20823500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations.
    Manley ME; Abernathy DL; Sahul R; Parshall DE; Lynn JW; Christianson AD; Stonaha PJ; Specht ED; Budai JD
    Sci Adv; 2016 Sep; 2(9):e1501814. PubMed ID: 27652338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.
    Brennan CJ; Ghosh R; Koul K; Banerjee SK; Lu N; Yu ET
    Nano Lett; 2017 Sep; 17(9):5464-5471. PubMed ID: 28763615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation of fibrils and plaques in amyloid molecular systems.
    Nicodemi M; de Candia A; Coniglio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041914. PubMed ID: 19905349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amyloid gels: precocious appearance of elastic properties during the formation of an insulin fibrillar network.
    Manno M; Giacomazza D; Newman J; Martorana V; San Biagio PL
    Langmuir; 2010 Feb; 26(3):1424-6. PubMed ID: 19916492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electromechanical and elastic probing of bacteria in a cell culture medium.
    Thompson GL; Reukov VV; Nikiforov MP; Jesse S; Kalinin SV; Vertegel AA
    Nanotechnology; 2012 Jun; 23(24):245705. PubMed ID: 22641388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.