BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20088886)

  • 1. atz gene expressions during atrazine degradation in the soil drilosphere.
    Monard C; Martin-Laurent F; Devers-Lamrani M; Lima O; Vandenkoornhuyse P; Binet F
    Mol Ecol; 2010 Feb; 19(4):749-59. PubMed ID: 20088886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization.
    Siripattanakul S; Wirojanagud W; McEvoy J; Limpiyakorn T; Khan E
    J Appl Microbiol; 2009 Mar; 106(3):986-92. PubMed ID: 19191954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and persistence of atrazine in several field soils with different atrazine application histories.
    Jablonowski ND; Hamacher G; Martinazzo R; Langen U; Köppchen S; Hofmann D; Burauel P
    J Agric Food Chem; 2010 Dec; 58(24):12869-77. PubMed ID: 21121649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid development of enhanced atrazine degradation in a Dundee silt loam soil under continuous corn and in rotation with cotton.
    Zablotowicz RM; Krutz LJ; Reddy KN; Weaver MA; Koger CH; Locke MA
    J Agric Food Chem; 2007 Feb; 55(3):852-9. PubMed ID: 17263485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96-4 pADP1::Tn5 to bacteria of maize-cultivated soil.
    Devers M; Henry S; Hartmann A; Martin-Laurent F
    Pest Manag Sci; 2005 Sep; 61(9):870-80. PubMed ID: 16032656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil.
    Smith D; Alvey S; Crowley DE
    FEMS Microbiol Ecol; 2005 Jul; 53(2):265-73. PubMed ID: 16329946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of atrazine and metolachlor by burrow linings developed in soils with different crop residues at the surface.
    Farenhorst A; Topp E; Bowman BT; Tomlin AD; Bryan RB
    J Environ Sci Health B; 2001 Jul; 36(4):389-96. PubMed ID: 11495017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for cross-adaptation between s-triazine herbicides resulting in reduced efficacy under field conditions.
    Krutz LJ; Burke IC; Reddy KN; Zablotowicz RM
    Pest Manag Sci; 2008 Oct; 64(10):1024-30. PubMed ID: 18473320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study.
    Monard C; Vandenkoornhuyse P; Le Bot B; Binet F
    ISME J; 2011 Jun; 5(6):1048-56. PubMed ID: 21160539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cow slurry amendment on atrazine dissipation and bacterial community structure in an agricultural Andisol.
    Briceño G; Jorquera MA; Demanet R; Mora ML; Durán N; Palma G
    Sci Total Environ; 2010 Jun; 408(14):2833-9. PubMed ID: 20388570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR.
    Martin-Laurent F; Piutti S; Hallet S; Wagschal I; Philippot L; Catroux G; Soulas G
    Pest Manag Sci; 2003 Mar; 59(3):259-68. PubMed ID: 12639042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of earthworms with Atrazine-degrading bacteria in an agricultural soil.
    Kersanté A; Martin-Laurent F; Soulas G; Binet F
    FEMS Microbiol Ecol; 2006 Aug; 57(2):192-205. PubMed ID: 16867138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence of the gene trzN and biogeographic patterns among atrazine-degrading bacteria isolated from 13 Colombian agricultural soils.
    Arbeli Z; Fuentes C
    FEMS Microbiol Ecol; 2010 Sep; 73(3):611-23. PubMed ID: 20597985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of novel atrazine-degrading microorganisms from an agricultural soil.
    Vibber LL; Pressler MJ; Colores GM
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):921-8. PubMed ID: 17318536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum densities.
    Rousseaux S; Hartmann A; Lagacherie B; Piutti S; Andreux F; Soulas G
    Chemosphere; 2003 May; 51(7):569-76. PubMed ID: 12615111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fluctuating soil humidity on in situ bioavailability and degradation of atrazine.
    Ngigi A; Dörfler U; Scherb H; Getenga Z; Boga H; Schroll R
    Chemosphere; 2011 Jul; 84(4):369-75. PubMed ID: 21531437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere.
    Liu YJ; Liu SJ; Drake HL; Horn MA
    Environ Microbiol; 2011 Apr; 13(4):991-1009. PubMed ID: 21219563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of ethylamine degrading bacteria to atrazine degradation in soils.
    Smith D; Crowley DE
    FEMS Microbiol Ecol; 2006 Nov; 58(2):271-7. PubMed ID: 17064268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils.
    Fang H; Lian J; Wang H; Cai L; Yu Y
    J Hazard Mater; 2015 Apr; 286():457-65. PubMed ID: 25603295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.