These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20088910)

  • 21. Electrophysiology of the suprachiasmatic circadian clock.
    Brown TM; Piggins HD
    Prog Neurobiol; 2007 Aug; 82(5):229-55. PubMed ID: 17646042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interrelations among feeding, circadian rhythms and ageing.
    Froy O; Miskin R
    Prog Neurobiol; 2007 Jun; 82(3):142-50. PubMed ID: 17482337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus).
    Kalsbeek A; Teclemariam-Mesbah R; Pévet P
    J Comp Neurol; 1993 Jun; 332(3):293-314. PubMed ID: 8331217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence?
    Nygård M; Palomba M
    Chronobiol Int; 2006; 23(1-2):427-35. PubMed ID: 16687316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suprachiasmatic nucleus and autonomic nervous system influences on awakening from sleep.
    Kalsbeek A; Yi CX; la Fleur SE; Buijs RM; Fliers E
    Int Rev Neurobiol; 2010; 93():91-107. PubMed ID: 20970002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting.
    Kalsbeek A; Buijs RM
    Cell Tissue Res; 2002 Jul; 309(1):109-18. PubMed ID: 12111541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods.
    Isobe Y; Nishino H
    Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signaling to the mammalian circadian clocks: in pursuit of the primary mammalian circadian photoreceptor.
    Pando MP; Sassone-Corsi P
    Sci STKE; 2001 Nov; 2001(107):re16. PubMed ID: 11698692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overview of cellular electrophysiological actions of vasopressin.
    Raggenbass M
    Eur J Pharmacol; 2008 Apr; 583(2-3):243-54. PubMed ID: 18280467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of vasopressin and oxytocin cells and fibres in the hypothalamus of the domestic pig (Sus scrofa).
    van Eerdenburg FJ; Swaab DF; van Leeuwen FW
    J Comp Neurol; 1992 Apr; 318(2):138-46. PubMed ID: 1583158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diurnal and seasonal rhythms of neuronal activity in the suprachiasmatic nucleus of humans.
    Hofman MA; Swaab DF
    J Biol Rhythms; 1993; 8(4):283-95. PubMed ID: 8032088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Daily regulation of hormone profiles.
    Kalsbeek A; Fliers E
    Handb Exp Pharmacol; 2013; (217):185-226. PubMed ID: 23604480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The circadian system and the balance of the autonomic nervous system.
    Buijs RM; Escobar C; Swaab DF
    Handb Clin Neurol; 2013; 117():173-91. PubMed ID: 24095125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The adrenal peripheral clock: glucocorticoid and the circadian timing system.
    Son GH; Chung S; Kim K
    Front Neuroendocrinol; 2011 Oct; 32(4):451-65. PubMed ID: 21802440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of the human hypothalamus.
    Swaab DF
    Neurochem Res; 1995 May; 20(5):509-19. PubMed ID: 7643957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The human hypothalamus: comparative morphometry and photoperiodic influences.
    Hofman MA; Swaab DF
    Prog Brain Res; 1992; 93():133-47; discussion 148-9. PubMed ID: 1480746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central and peripheral roles of vasopressin in the circadian defense of body hydration.
    Gizowski C; Trudel E; Bourque CW
    Best Pract Res Clin Endocrinol Metab; 2017 Dec; 31(6):535-546. PubMed ID: 29224666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system.
    Buijs RM; Hermes MH; Kalsbeek A
    Prog Brain Res; 1998; 119():365-82. PubMed ID: 10074800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region.
    Brandstätter R; Abraham U
    Chronobiol Int; 2003 Jul; 20(4):637-55. PubMed ID: 12916717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suprachiasmatic Nucleus Neuropeptides and Their Control of Endogenous Glucose Production.
    Foppen E; Tan AA; Ackermans MT; Fliers E; Kalsbeek A
    J Neuroendocrinol; 2016 Apr; 28(4):. PubMed ID: 26791158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.