These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 20088959)
1. Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago. Estes JA; Tinker MT; Bodkin JL Conserv Biol; 2010 Jun; 24(3):852-60. PubMed ID: 20088959 [TBL] [Abstract][Full Text] [Related]
2. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago. Reisewitz SE; Estes JA; Simenstad CA Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296 [TBL] [Abstract][Full Text] [Related]
3. From the predictable to the unexpected: kelp forest and benthic invertebrate community dynamics following decades of sea otter expansion. Shelton AO; Harvey CJ; Samhouri JF; Andrews KS; Feist BE; Frick KE; Tolimieri N; Williams GD; Antrim LD; Berry HD Oecologia; 2018 Dec; 188(4):1105-1119. PubMed ID: 30311056 [TBL] [Abstract][Full Text] [Related]
4. Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts. Burt JM; Tinker MT; Okamoto DK; Demes KW; Holmes K; Salomon AK Proc Biol Sci; 2018 Jul; 285(1883):. PubMed ID: 30051864 [TBL] [Abstract][Full Text] [Related]
5. Sea otters, kelp forests, and the extinction of Steller's sea cow. Estes JA; Burdin A; Doak DF Proc Natl Acad Sci U S A; 2016 Jan; 113(4):880-5. PubMed ID: 26504217 [TBL] [Abstract][Full Text] [Related]
6. Indirect effects of sea otters on rockfish (Sebastes spp.) in giant kelp forests. Markel RW; Shurin JB Ecology; 2015 Nov; 96(11):2877-90. PubMed ID: 27070008 [TBL] [Abstract][Full Text] [Related]
7. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades. Anthony RG; Estes JA; Ricca MA; Miles AK; Forsman ED Ecology; 2008 Oct; 89(10):2725-35. PubMed ID: 18959310 [TBL] [Abstract][Full Text] [Related]
8. A century of canopy kelp persistence and recovery in the Gulf of Alaska. Hollarsmith JA; Cornett JC; Evenson E; Tugaw A Ann Bot; 2024 Mar; 133(1):105-116. PubMed ID: 37832150 [TBL] [Abstract][Full Text] [Related]
9. Southeast Alaskan kelp forests: inferences of process from large-scale patterns of variation in space and time. Gorra TR; Garcia SCR; Langhans MR; Hoshijima U; Estes JA; Raimondi PT; Tinker MT; Kenner MC; Kroeker KJ Proc Biol Sci; 2022 Jan; 289(1967):20211697. PubMed ID: 35042419 [TBL] [Abstract][Full Text] [Related]
10. Species distribution modeling of northern sea otters ( Hasan EL; Gorman KB; Coletti HA; Konar B Ecol Evol; 2024 Mar; 14(3):e11118. PubMed ID: 38455143 [TBL] [Abstract][Full Text] [Related]
11. Non-trophic impacts from white sharks complicate population recovery for sea otters. Moxley JH; Nicholson TE; Van Houtan KS; Jorgensen SJ Ecol Evol; 2019 Jun; 9(11):6378-6388. PubMed ID: 31236228 [TBL] [Abstract][Full Text] [Related]
12. Reductions in the dietary niche of southern sea otters ( Elliott Smith EA; Tinker MT; Whistler EL; Kennett DJ; Vellanoweth RL; Gifford-Gonzalez D; Hylkema MG; Newsome SD Ecol Evol; 2020 Apr; 10(7):3318-3329. PubMed ID: 32273989 [TBL] [Abstract][Full Text] [Related]
13. Novel Bartonella infection in northern and southern sea otters (Enhydra lutris kenyoni and Enhydra lutris nereis). Carrasco SE; Chomel BB; Gill VA; Kasten RW; Maggi RG; Breitschwerdt EB; Byrne BA; Burek-Huntington KA; Miller MA; Goldstein T; Mazet JA Vet Microbiol; 2014 Jun; 170(3-4):325-34. PubMed ID: 24629902 [TBL] [Abstract][Full Text] [Related]
14. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters. Hanni KD; Mazet JA; Gulland FM; Estes J; Staedler M; Murray MJ; Miller M; Jessup DA J Wildl Dis; 2003 Oct; 39(4):837-50. PubMed ID: 14733279 [TBL] [Abstract][Full Text] [Related]
15. Archaeological mitogenomes illuminate the historical ecology of sea otters ( Wellman HP; Austin RM; Dagtas ND; Moss ML; Rick TC; Hofman CA Proc Biol Sci; 2020 Dec; 287(1940):20202343. PubMed ID: 33259759 [TBL] [Abstract][Full Text] [Related]
16. Assessment of clinical pathology and pathogen exposure in sea otters (Enhydra lutris) bordering the threatened population in Alaska. Goldstein T; Gill VA; Tuomi P; Monson D; Burdin A; Conrad PA; Dunn JL; Field C; Johnson C; Jessup DA; Bodkin J; Doroff AM J Wildl Dis; 2011 Jul; 47(3):579-92. PubMed ID: 21719822 [TBL] [Abstract][Full Text] [Related]
17. Species recovery and recolonization of past habitats: lessons for science and conservation from sea otters in estuaries. Hughes BB; Wasson K; Tinker MT; Williams SL; Carswell LP; Boyer KE; Beck MW; Eby R; Scoles R; Staedler M; Espinosa S; Hessing-Lewis M; Foster EU; M Beheshti K; Grimes TM; Becker BH; Needles L; Tomoleoni JA; Rudebusch J; Hines E; Silliman BR PeerJ; 2019; 7():e8100. PubMed ID: 31844568 [TBL] [Abstract][Full Text] [Related]
18. Mercury content in the fur of sea otters (Enhydra lutris) from the Commander Islands. Ryazanov SD; Fomin SV; Kalinchuk VV Mar Pollut Bull; 2023 Mar; 188():114638. PubMed ID: 36706549 [TBL] [Abstract][Full Text] [Related]
19. A new pathogen transmission mechanism in the ocean: the case of sea otter exposure to the land-parasite Toxoplasma gondii. Mazzillo FF; Shapiro K; Silver MW PLoS One; 2013; 8(12):e82477. PubMed ID: 24386100 [TBL] [Abstract][Full Text] [Related]
20. Trophic downgrading reduces spatial variability on rocky reefs. Edwards MS; Konar B Sci Rep; 2020 Oct; 10(1):18079. PubMed ID: 33093542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]