BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20088959)

  • 1. Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago.
    Estes JA; Tinker MT; Bodkin JL
    Conserv Biol; 2010 Jun; 24(3):852-60. PubMed ID: 20088959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.
    Reisewitz SE; Estes JA; Simenstad CA
    Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From the predictable to the unexpected: kelp forest and benthic invertebrate community dynamics following decades of sea otter expansion.
    Shelton AO; Harvey CJ; Samhouri JF; Andrews KS; Feist BE; Frick KE; Tolimieri N; Williams GD; Antrim LD; Berry HD
    Oecologia; 2018 Dec; 188(4):1105-1119. PubMed ID: 30311056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts.
    Burt JM; Tinker MT; Okamoto DK; Demes KW; Holmes K; Salomon AK
    Proc Biol Sci; 2018 Jul; 285(1883):. PubMed ID: 30051864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sea otters, kelp forests, and the extinction of Steller's sea cow.
    Estes JA; Burdin A; Doak DF
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):880-5. PubMed ID: 26504217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect effects of sea otters on rockfish (Sebastes spp.) in giant kelp forests.
    Markel RW; Shurin JB
    Ecology; 2015 Nov; 96(11):2877-90. PubMed ID: 27070008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.
    Anthony RG; Estes JA; Ricca MA; Miles AK; Forsman ED
    Ecology; 2008 Oct; 89(10):2725-35. PubMed ID: 18959310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A century of canopy kelp persistence and recovery in the Gulf of Alaska.
    Hollarsmith JA; Cornett JC; Evenson E; Tugaw A
    Ann Bot; 2024 Mar; 133(1):105-116. PubMed ID: 37832150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Southeast Alaskan kelp forests: inferences of process from large-scale patterns of variation in space and time.
    Gorra TR; Garcia SCR; Langhans MR; Hoshijima U; Estes JA; Raimondi PT; Tinker MT; Kenner MC; Kroeker KJ
    Proc Biol Sci; 2022 Jan; 289(1967):20211697. PubMed ID: 35042419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species distribution modeling of northern sea otters (
    Hasan EL; Gorman KB; Coletti HA; Konar B
    Ecol Evol; 2024 Mar; 14(3):e11118. PubMed ID: 38455143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-trophic impacts from white sharks complicate population recovery for sea otters.
    Moxley JH; Nicholson TE; Van Houtan KS; Jorgensen SJ
    Ecol Evol; 2019 Jun; 9(11):6378-6388. PubMed ID: 31236228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductions in the dietary niche of southern sea otters (
    Elliott Smith EA; Tinker MT; Whistler EL; Kennett DJ; Vellanoweth RL; Gifford-Gonzalez D; Hylkema MG; Newsome SD
    Ecol Evol; 2020 Apr; 10(7):3318-3329. PubMed ID: 32273989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Bartonella infection in northern and southern sea otters (Enhydra lutris kenyoni and Enhydra lutris nereis).
    Carrasco SE; Chomel BB; Gill VA; Kasten RW; Maggi RG; Breitschwerdt EB; Byrne BA; Burek-Huntington KA; Miller MA; Goldstein T; Mazet JA
    Vet Microbiol; 2014 Jun; 170(3-4):325-34. PubMed ID: 24629902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters.
    Hanni KD; Mazet JA; Gulland FM; Estes J; Staedler M; Murray MJ; Miller M; Jessup DA
    J Wildl Dis; 2003 Oct; 39(4):837-50. PubMed ID: 14733279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Archaeological mitogenomes illuminate the historical ecology of sea otters (
    Wellman HP; Austin RM; Dagtas ND; Moss ML; Rick TC; Hofman CA
    Proc Biol Sci; 2020 Dec; 287(1940):20202343. PubMed ID: 33259759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of clinical pathology and pathogen exposure in sea otters (Enhydra lutris) bordering the threatened population in Alaska.
    Goldstein T; Gill VA; Tuomi P; Monson D; Burdin A; Conrad PA; Dunn JL; Field C; Johnson C; Jessup DA; Bodkin J; Doroff AM
    J Wildl Dis; 2011 Jul; 47(3):579-92. PubMed ID: 21719822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species recovery and recolonization of past habitats: lessons for science and conservation from sea otters in estuaries.
    Hughes BB; Wasson K; Tinker MT; Williams SL; Carswell LP; Boyer KE; Beck MW; Eby R; Scoles R; Staedler M; Espinosa S; Hessing-Lewis M; Foster EU; M Beheshti K; Grimes TM; Becker BH; Needles L; Tomoleoni JA; Rudebusch J; Hines E; Silliman BR
    PeerJ; 2019; 7():e8100. PubMed ID: 31844568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury content in the fur of sea otters (Enhydra lutris) from the Commander Islands.
    Ryazanov SD; Fomin SV; Kalinchuk VV
    Mar Pollut Bull; 2023 Mar; 188():114638. PubMed ID: 36706549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new pathogen transmission mechanism in the ocean: the case of sea otter exposure to the land-parasite Toxoplasma gondii.
    Mazzillo FF; Shapiro K; Silver MW
    PLoS One; 2013; 8(12):e82477. PubMed ID: 24386100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic downgrading reduces spatial variability on rocky reefs.
    Edwards MS; Konar B
    Sci Rep; 2020 Oct; 10(1):18079. PubMed ID: 33093542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.