BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20089254)

  • 1. 3D structure-based protein retention prediction for ion-exchange chromatography.
    Dismer F; Hubbuch J
    J Chromatogr A; 2010 Feb; 1217(8):1343-53. PubMed ID: 20089254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents.
    Dismer F; Petzold M; Hubbuch J
    J Chromatogr A; 2008 Jun; 1194(1):11-21. PubMed ID: 18234205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of protein and stationary phase properties on protein-matrix-interaction in cation exchange chromatography.
    Urmann M; Hafner M; Frech C
    J Chromatogr A; 2011 Aug; 1218(31):5136-45. PubMed ID: 21684547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent.
    Zhang S; Sun Y
    Biotechnol Prog; 2004; 20(1):207-14. PubMed ID: 14763844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach towards surface imprinting using the enzyme ribonuclease A.
    Kempe M; Glad M; Mosbach K
    J Mol Recognit; 1995; 8(1-2):35-9. PubMed ID: 7598950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of a single protein interacting with multiple ligands: inner radial humps in the concentration profiles induced by non-uniform ligand density distributions.
    Riccardi E; Liapis AI
    J Sep Sci; 2009 Dec; 32(23-24):4059-68. PubMed ID: 19950351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A.
    Guélat B; Ströhlein G; Lattuada M; Morbidelli M
    J Chromatogr A; 2010 Aug; 1217(35):5610-21. PubMed ID: 20663509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography selectivity changes among three stable proteins: conformation does not play a major role.
    Jones TT; Fernandez EJ
    Biotechnol Bioeng; 2004 Aug; 87(3):388-99. PubMed ID: 15281113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of lysozyme binding to histamine as a ligand for hydrophobic charge induction chromatography.
    Shi QH; Shen FF; Sun S
    Biotechnol Prog; 2010; 26(1):134-41. PubMed ID: 19785039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins.
    Dismer F; Hubbuch J
    J Chromatogr A; 2007 May; 1149(2):312-20. PubMed ID: 17439816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of protein conformational changes on separation performance in electrostatic interaction chromatography: unfolded proteins and PEGylated proteins.
    Yamamoto S; Fujii S; Yoshimoto N; Akbarzadehlaleh P
    J Biotechnol; 2007 Oct; 132(2):196-201. PubMed ID: 17640756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of Martini force field for molecular dynamics simulation of hydrophobic charge induction chromatography of lysozyme.
    Zhang L; Bai S; Sun Y
    J Mol Graph Model; 2011 Jun; 29(7):906-14. PubMed ID: 21441050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic contributions to protein retention in ion-exchange chromatography. 2. Proteins with various degrees of structural differences.
    Yao Y; Lenhoff AM
    Anal Chem; 2005 Apr; 77(7):2157-65. PubMed ID: 15801750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-exchange chromatographic protein refolding.
    Freydell EJ; van der Wielen L; Eppink M; Ottens M
    J Chromatogr A; 2010 Nov; 1217(46):7265-74. PubMed ID: 20933240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography.
    Zhang L; Bai S; Sun Y
    J Mol Graph Model; 2010 Jun; 28(8):863-9. PubMed ID: 20418134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography.
    Zhao G; Peng G; Li F; Shi Q; Sun Y
    J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.
    Boto RE; Anyanwu U; Sousa F; Almeida P; Queiroz JA
    Biomed Chromatogr; 2009 Sep; 23(9):987-93. PubMed ID: 19347966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models.
    Bruch T; Graalfs H; Jacob L; Frech C
    J Chromatogr A; 2009 Feb; 1216(6):919-26. PubMed ID: 19111307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of protein multipoint adsorption on ion-exchange adsorbent and its application to the purification of macromolecules.
    Huang Y; Bi J; Zhao L; Ma G; Su Z
    Protein Expr Purif; 2010 Dec; 74(2):257-63. PubMed ID: 20637872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A predictive approach to correlating protein adsorption isotherms on ion-exchange media.
    Xu X; Lenhoff AM
    J Phys Chem B; 2008 Jan; 112(3):1028-40. PubMed ID: 18171041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.