These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 20089338)
1. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment. Uddling J; Hogg AJ; Teclaw RM; Carroll MA; Ellsworth DS Environ Pollut; 2010 Jun; 158(6):2023-31. PubMed ID: 20089338 [TBL] [Abstract][Full Text] [Related]
2. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339 [TBL] [Abstract][Full Text] [Related]
3. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Uddling J; Teclaw RM; Kubiske ME; Pregitzer KS; Ellsworth DS Tree Physiol; 2008 Aug; 28(8):1231-43. PubMed ID: 18519254 [TBL] [Abstract][Full Text] [Related]
4. Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Onandia G; Olsson AK; Barth S; King JS; Uddling J Environ Pollut; 2011 Oct; 159(10):2350-4. PubMed ID: 21733606 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2. Cardoso-Vilhena J; Balaguer L; Eamus D; Ollerenshaw J; Barnes J J Exp Bot; 2004 Mar; 55(397):771-81. PubMed ID: 14966219 [TBL] [Abstract][Full Text] [Related]
6. Effects of Elevated Atmospheric Carbon Dioxide and Tropospheric Ozone on Phytochemical Composition of Trembling Aspen ( Populus tremuloides ) and Paper Birch ( Betula papyrifera ). Couture JJ; Meehan TD; Rubert-Nason KF; Lindroth RL J Chem Ecol; 2017 Jan; 43(1):26-38. PubMed ID: 27943083 [TBL] [Abstract][Full Text] [Related]
7. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Lindroth RL; Kopper BJ; Parsons WF; Bockheim JG; Karnosky DF; Hendrey GR; Pregitzer KS; Isebrands JG; Sober J Environ Pollut; 2001; 115(3):395-404. PubMed ID: 11789920 [TBL] [Abstract][Full Text] [Related]
8. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand. Nunn AJ; Cieslik S; Metzger U; Wieser G; Matyssek R Environ Pollut; 2010 Jun; 158(6):2014-22. PubMed ID: 20056523 [TBL] [Abstract][Full Text] [Related]
9. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Liu L; King JS; Giardina CP Tree Physiol; 2005 Dec; 25(12):1511-22. PubMed ID: 16137937 [TBL] [Abstract][Full Text] [Related]
10. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. Riikonen J; Percy KE; Kivimäenpää M; Kubiske ME; Nelson ND; Vapaavuori E; Karnosky DF Environ Pollut; 2010 Apr; 158(4):1029-35. PubMed ID: 19674822 [TBL] [Abstract][Full Text] [Related]
11. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots. Chapman JA; King JS; Pregitzer KS; Zak DR Tree Physiol; 2005 Dec; 25(12):1501-10. PubMed ID: 16137936 [TBL] [Abstract][Full Text] [Related]
12. Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the aspen FACE experiment. Oksanen E; Sober J; Karnosky DF Environ Pollut; 2001; 115(3):437-46. PubMed ID: 11789924 [TBL] [Abstract][Full Text] [Related]
13. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Darbah JN; Kubiske ME; Nelson N; Oksanen E; Vapaavuori E; Karnosky DF Environ Pollut; 2008 Oct; 155(3):446-52. PubMed ID: 18355950 [TBL] [Abstract][Full Text] [Related]
14. Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3? Darbah JN; Kubiske ME; Nelson N; Kets K; Riikonen J; Sober A; Rouse L; Karnosky DF Environ Pollut; 2010 Apr; 158(4):983-91. PubMed ID: 19910096 [TBL] [Abstract][Full Text] [Related]
15. Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydrologic budgeting. Rhea L; King J; Kubiske M; Saliendra N; Teclaw R Environ Pollut; 2010 Apr; 158(4):1079-87. PubMed ID: 19783339 [TBL] [Abstract][Full Text] [Related]
16. The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. Booker FL; Fiscus EL J Exp Bot; 2005 Aug; 56(418):2139-51. PubMed ID: 15983015 [TBL] [Abstract][Full Text] [Related]
17. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Kubiske ME; Quinn VS; Marquardt PE; Karnosky DF Plant Biol (Stuttg); 2007 Mar; 9(2):342-55. PubMed ID: 17236101 [TBL] [Abstract][Full Text] [Related]
18. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Pregitzer K; Loya W; Kubiske M; Zak D Oecologia; 2006 Jun; 148(3):503-16. PubMed ID: 16489459 [TBL] [Abstract][Full Text] [Related]
19. Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula. Mäenpää M; Riikonen J; Kontunen-Soppela S; Rousi M; Oksanen E Tree Physiol; 2011 Aug; 31(8):808-18. PubMed ID: 21856655 [TBL] [Abstract][Full Text] [Related]
20. Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): reproductive fitness. Darbah JN; Kubiske ME; Nelson N; Oksanen E; Vaapavuori E; Karnosky DF ScientificWorldJournal; 2007 Mar; 7 Suppl 1():240-6. PubMed ID: 17450302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]