These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Dynamic control of extracellular environment in in vitro neural recording systems. Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901 [TBL] [Abstract][Full Text] [Related]
7. Micro-multi-probe electrode array to measure neural signals. Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284 [TBL] [Abstract][Full Text] [Related]
8. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [TBL] [Abstract][Full Text] [Related]
9. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [TBL] [Abstract][Full Text] [Related]
10. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304 [TBL] [Abstract][Full Text] [Related]
11. A high-yield fabrication process for silicon neural probes. Oh SJ; Song JK; Kim JW; Kim SJ IEEE Trans Biomed Eng; 2006 Feb; 53(2):351-4. PubMed ID: 16485767 [TBL] [Abstract][Full Text] [Related]
13. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio. Takei K; Kawano T; Kawashima T; Sawada K; Kaneko H; Ishida M Biomed Microdevices; 2010 Feb; 12(1):41-8. PubMed ID: 19757069 [TBL] [Abstract][Full Text] [Related]
14. A cone-shaped 3D carbon nanotube probe for neural recording. Su HC; Lin CM; Yen SJ; Chen YC; Chen CH; Yeh SR; Fang W; Chen H; Yao DJ; Chang YC; Yew TR Biosens Bioelectron; 2010 Sep; 26(1):220-7. PubMed ID: 20685101 [TBL] [Abstract][Full Text] [Related]
15. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry. Chang CH; Chang SR; Lin JS; Lee YT; Yeh SR; Chen H Biosens Bioelectron; 2009 Feb; 24(6):1757-64. PubMed ID: 18951013 [TBL] [Abstract][Full Text] [Related]
16. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
17. Scaling limitations of silicon multichannel recording probes. Najafi K; Ji J; Wise KD IEEE Trans Biomed Eng; 1990 Jan; 37(1):1-11. PubMed ID: 2303265 [TBL] [Abstract][Full Text] [Related]
18. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays. Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112 [TBL] [Abstract][Full Text] [Related]
19. Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array. Yang YT; Lin PK; Wan C; Yang WC; Lin LJ; Wu CY; Chiao CC Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9353-61. PubMed ID: 22058338 [TBL] [Abstract][Full Text] [Related]