BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20089393)

  • 21. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multisite recording of extracellular potentials produced by microchannel-confined neurons in-vitro.
    Claverol-Tinturé E; Cabestany J; Rosell X
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):331-5. PubMed ID: 17278590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays.
    Patolsky F; Timko BP; Yu G; Fang Y; Greytak AB; Zheng G; Lieber CM
    Science; 2006 Aug; 313(5790):1100-4. PubMed ID: 16931757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parylene flexible neural probes integrated with microfluidic channels.
    Takeuchi S; Ziegler D; Yoshida Y; Mabuchi K; Suzuki T
    Lab Chip; 2005 May; 5(5):519-23. PubMed ID: 15856088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y; Chang JC; Wheeler BC; Brewer GJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons.
    Cohen A; Spira ME; Yitshaik S; Borghs G; Shwartzglass O; Shappir J
    Biosens Bioelectron; 2004 Jul; 19(12):1703-9. PubMed ID: 15142605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2011 Jun; 8(3):035004. PubMed ID: 21593545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated electrodes on a silicon based ion channel measurement platform.
    Wilk SJ; Petrossian L; Goryll M; Thornton TJ; Goodnick SM; Tang JM; Eisenberg RS
    Biosens Bioelectron; 2007 Sep; 23(2):183-90. PubMed ID: 17507211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of high-level pulse train stimulation on retinal function.
    Cohen ED
    J Neural Eng; 2009 Jun; 6(3):035005. PubMed ID: 19458404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue.
    Nakajima A; Kimura H; Sawadsaringkarn Y; Maezawa Y; Kobayashi T; Noda T; Sasagawa K; Tokuda T; Ishikawa Y; Shiosaka S; Ohta J
    Opt Express; 2012 Mar; 20(6):6097-108. PubMed ID: 22418489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model retinal interface based on directed neuronal growth for single cell stimulation.
    Mehenti NZ; Tsien GS; Leng T; Fishman HA; Bent SF
    Biomed Microdevices; 2006 Jun; 8(2):141-50. PubMed ID: 16688573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves.
    Kovacs GT; Storment CW; Halks-Miller M; Belczynski CR; Della Santina CC; Lewis ER; Maluf NI
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):567-77. PubMed ID: 7927376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.