These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20089393)

  • 61. A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays.
    Dabrowski W; Grybos P; Litke AM
    Biosens Bioelectron; 2004 Feb; 19(7):749-61. PubMed ID: 14709394
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis.
    Hadjinicolaou AE; Leung RT; Garrett DJ; Ganesan K; Fox K; Nayagam DA; Shivdasani MN; Meffin H; Ibbotson MR; Prawer S; O'Brien BJ
    Biomaterials; 2012 Aug; 33(24):5812-20. PubMed ID: 22613134
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications.
    Wang J; Wagner F; Borton DA; Zhang J; Ozden I; Burwell RD; Nurmikko AV; van Wagenen R; Diester I; Deisseroth K
    J Neural Eng; 2012 Feb; 9(1):016001. PubMed ID: 22156042
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Detection of neural signals with vertically grown single platinum nanowire-nanobud.
    Choi DS; Fung AO; Moon H; Villareal G; Chen Y; Ho D; Presser N; Stupian G; Leung M
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6483-6. PubMed ID: 19908553
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Integration of silicon-via electrodes with different recording characteristics on a glass microprobe using a glass reflowing process.
    Lee YT; Yeh SR; Chang YC; Fang W
    Biosens Bioelectron; 2011 Aug; 26(12):4739-46. PubMed ID: 21696942
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; van Hoof C; Ruther P; Aarts A; Horváth D; Ulbert I
    Biosens Bioelectron; 2018 May; 106():86-92. PubMed ID: 29414094
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanoelectronic interface for lab-on-a-chip devices.
    Abraham JK; Yoon H; Chintakuntla R; Kavdia M; Varadan VK
    IET Nanobiotechnol; 2008 Sep; 2(3):55-61. PubMed ID: 19045838
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery.
    Lee HJ; Son Y; Kim J; Lee CJ; Yoon ES; Cho IJ
    Lab Chip; 2015 Mar; 15(6):1590-7. PubMed ID: 25651943
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo.
    Saha R; Jackson N; Patel C; Muthuswamy J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):489-97. PubMed ID: 20667815
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using microelectronics technology to communicate with living cells.
    Heer F; Hafizovic S; Ugniwenko T; Frey U; Roscic B; Blau A; Hierlemann A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6082-5. PubMed ID: 18003402
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A versatile all-channel stimulator for electrode arrays, with real-time control.
    Wagenaar DA; Potter SM
    J Neural Eng; 2004 Mar; 1(1):39-45. PubMed ID: 15876621
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Light-addressable planar electrode with hydrogenated amorphous silicon and low-conductive passivation layer for stimulation of cultured neurons.
    Suzurikawa J; Takahashi H; Takayama Y; Warisawa S; Mitsuishi M; Nakao M; Jimbo Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():648-51. PubMed ID: 17945992
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Towards a bacteriorhodopsin-silicon neuromorphic photosensor.
    Martin CH; Chen ZP; Birge RR
    Pac Symp Biocomput; 1997; ():268-79. PubMed ID: 9390298
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays.
    Fujishiro A; Kaneko H; Kawashima T; Ishida M; Kawano T
    Sci Rep; 2014 May; 4():4868. PubMed ID: 24785307
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical interaction.
    Frey O; van der Wal PD; Spieth S; Brett O; Seidl K; Paul O; Ruther P; Zengerle R; de Rooij NF
    J Neural Eng; 2011 Dec; 8(6):066001. PubMed ID: 21975226
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Acousto-optic laser scanning for multi-site photo-stimulation of single neurons in vitro.
    Losavio BE; Iyer V; Patel S; Saggau P
    J Neural Eng; 2010 Aug; 7(4):045002. PubMed ID: 20644249
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Micro-reaction chamber electrodes for neural stimulation and recording.
    Shanmugasundaram B; Gluckman BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():656-9. PubMed ID: 22254394
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanocavity electrode array for recording from electrogenic cells.
    Hofmann B; Kätelhön E; Schottdorf M; Offenhäusser A; Wolfrum B
    Lab Chip; 2011 Mar; 11(6):1054-8. PubMed ID: 21286648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.