BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2008957)

  • 1. Intracoronary isoflurane causes marked vasodilation in canine hearts.
    Crystal GJ; Kim SJ; Czinn EA; Salem MR; Mason WR; Abdel-Latif M
    Anesthesiology; 1991 Apr; 74(4):757-65. PubMed ID: 2008957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coronary vasodilation by isoflurane. Abrupt versus gradual administration.
    Crystal GJ; Czinn EA; Silver JM; Salem MR
    Anesthesiology; 1995 Feb; 82(2):542-9. PubMed ID: 7856912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide does not mediate coronary vasodilation by isoflurane.
    Crystal GJ; Kim SJ; Salem MR; Khoury E; Gurevicius J
    Anesthesiology; 1994 Jul; 81(1):209-20. PubMed ID: 8042788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct coronary vasomotor effects of sevoflurane and desflurane in in situ canine hearts.
    Crystal GJ; Zhou X; Gurevicius J; Czinn EA; Salem MR; Alam S; Piotrowski A; Hu G
    Anesthesiology; 2000 Apr; 92(4):1103-13. PubMed ID: 10754631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct effects of halothane on coronary blood flow, myocardial oxygen consumption, and myocardial segmental shortening in in situ canine hearts.
    Crystal GJ; Khoury E; Gurevicius J; Salem MR
    Anesth Analg; 1995 Feb; 80(2):256-62. PubMed ID: 7818110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoflurane-induced coronary vasodilation is preserved in reperfused myocardium.
    Crystal GJ; Gurevicius J; Salem MR
    Anesth Analg; 1996 Jan; 82(1):22-8. PubMed ID: 8712415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The direct effects of enflurane on coronary blood flow, myocardial oxygen consumption, and myocardial segmental shortening in in situ canine hearts.
    Gurevicius J; Holmes CB; Salem MR; Abdel-Halim A; Crystal GJ
    Anesth Analg; 1996 Jul; 83(1):68-74. PubMed ID: 8659768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of adenosine triphosphate-sensitive potassium channels in coronary vasodilation by halothane, isoflurane, and enflurane.
    Crystal GJ; Gurevicius J; Salem MR; Zhou X
    Anesthesiology; 1997 Feb; 86(2):448-58. PubMed ID: 9054263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional vasodilating properties of isoflurane in normal swine myocardium.
    Hickey RF; Cason BA; Shubayev I
    Anesthesiology; 1994 Mar; 80(3):574-81. PubMed ID: 8141453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation.
    Cason BA; Shubayev I; Hickey RF
    Anesthesiology; 1994 Nov; 81(5):1245-55; discussion 27A-28A. PubMed ID: 7978484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional vasodilating properties of isoflurane in stunned swine myocardium.
    Hickey RF; Cason BA; Shubayev I
    J Card Surg; 1994 May; 9(3 Suppl):430-6. PubMed ID: 8069032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmural redistribution of myocardial blood flow during isoflurane anesthesia and its effects on regional myocardial function in a canine model of fixed coronary stenosis.
    Wilton NC; Knight PR; Ullrich K; Martin B; Gallagher KP
    Anesthesiology; 1993 Mar; 78(3):510-23. PubMed ID: 8457052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent coronary vasodilation during long-term, supramaximal doses of adenosine.
    Crystal GJ; Downey HF; Bashour FA
    Am J Physiol; 1984 Nov; 247(5 Pt 2):H869-73. PubMed ID: 6496766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of isoflurane on myocardial blood flow, function, and oxygen consumption in the presence of critical coronary stenosis in dogs.
    Tatekawa S; Traber KB; Hantler CB; Tait AR; Gallagher KP; Knight PR
    Anesth Analg; 1987 Nov; 66(11):1073-82. PubMed ID: 3662052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylephrine does not limit myocardial blood flow or oxygen delivery during isoflurane-induced hypotension in dogs.
    Abdel-Latif M; Kim SJ; Salem MR; Crystal GJ
    Anesth Analg; 1992 Jun; 74(6):870-6. PubMed ID: 1595919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No evidence for blood flow redistribution with isoflurane or halothane during acute coronary artery occlusion in fentanyl-anesthetized dogs.
    Moore PG; Kien ND; Reitan JA; White DA; Safwat AM
    Anesthesiology; 1991 Nov; 75(5):854-65. PubMed ID: 1952210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Left ventricular oxygen tensions in dogs during coronary vasodilation by enflurane, isoflurane and dipyridamole.
    Habazettl H; Conzen PF; Hobbhahn J; Granetzny T; Goetz AE; Peter K; Brendel W
    Anesth Analg; 1989 Mar; 68(3):286-94. PubMed ID: 2919768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine deaminase attenuates canine coronary vasodilatation during regional non-ischaemic myocardial hypoxia.
    Merrill GF; Downey HF; Yonekura S; Watanabe N; Jones CE
    Cardiovasc Res; 1988 May; 22(5):345-50. PubMed ID: 3191518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs.
    Hirano M; Fujigaki T; Shibata O; Sumikawa K
    Anesth Analg; 1995 Apr; 80(4):651-6. PubMed ID: 7893013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.