BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20089668)

  • 1. CFTR-mediated halide transport in phagosomes of human neutrophils.
    Painter RG; Marrero L; Lombard GA; Valentine VG; Nauseef WM; Wang G
    J Leukoc Biol; 2010 May; 87(5):933-42. PubMed ID: 20089668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride transport in functionally active phagosomes isolated from Human neutrophils.
    Aiken ML; Painter RG; Zhou Y; Wang G
    Free Radic Biol Med; 2012 Dec; 53(12):2308-17. PubMed ID: 23089227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils.
    Zhou Y; Song K; Painter RG; Aiken M; Reiser J; Stanton BA; Nauseef WM; Wang G
    J Innate Immun; 2013; 5(3):219-30. PubMed ID: 23486169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR targeting during activation of human neutrophils.
    Ng HP; Valentine VG; Wang G
    J Leukoc Biol; 2016 Dec; 100(6):1413-1424. PubMed ID: 27406994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis.
    Painter RG; Valentine VG; Lanson NA; Leidal K; Zhang Q; Lombard G; Thompson C; Viswanathan A; Nauseef WM; Wang G; Wang G
    Biochemistry; 2006 Aug; 45(34):10260-9. PubMed ID: 16922501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule-facilitated anion transporters in cells for a novel therapeutic approach to cystic fibrosis.
    Fiore M; Cossu C; Capurro V; Picco C; Ludovico A; Mielczarek M; Carreira-Barral I; Caci E; Baroni D; Quesada R; Moran O
    Br J Pharmacol; 2019 Jun; 176(11):1764-1779. PubMed ID: 30825185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.
    Painter RG; Bonvillain RW; Valentine VG; Lombard GA; LaPlace SG; Nauseef WM; Wang G
    J Leukoc Biol; 2008 Jun; 83(6):1345-53. PubMed ID: 18353929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages.
    Haggie PM; Verkman AS
    J Biol Chem; 2007 Oct; 282(43):31422-8. PubMed ID: 17724021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt, chloride, bleach, and innate host defense.
    Wang G; Nauseef WM
    J Leukoc Biol; 2015 Aug; 98(2):163-72. PubMed ID: 26048979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice.
    Ng HP; Zhou Y; Song K; Hodges CA; Drumm ML; Wang G
    PLoS One; 2014; 9(9):e106813. PubMed ID: 25184794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR.
    MacVinish LJ; Cope G; Ropenga A; Cuthbert AW
    Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles.
    Barriere H; Bagdany M; Bossard F; Okiyoneda T; Wojewodka G; Gruenert D; Radzioch D; Lukacs GL
    Mol Biol Cell; 2009 Jul; 20(13):3125-41. PubMed ID: 19420138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.
    Guerra L; D'Oria S; Favia M; Castellani S; Santostasi T; Polizzi AM; Mariggiò MA; Gallo C; Casavola V; Montemurro P; Leonetti G; Manca A; Conese M
    Pediatr Pulmonol; 2017 Jul; 52(7):900-908. PubMed ID: 28445004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride flux in phagocytes.
    Wang G
    Immunol Rev; 2016 Sep; 273(1):219-31. PubMed ID: 27558337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-(dialkylamino)-4H-1-benzopyran-4-one derivatives modify chloride conductance in CFTR expressing cells.
    Mazzei M; Nieddu E; Folli C; Caci E; Galietta LV
    Farmaco; 2003 Sep; 58(9):961-70. PubMed ID: 13679192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a Yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators.
    Sui J; Cotard S; Andersen J; Zhu P; Staunton J; Lee M; Lin S
    Assay Drug Dev Technol; 2010 Dec; 8(6):656-68. PubMed ID: 21050066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils.
    Simchowitz L
    J Gen Physiol; 1988 Jun; 91(6):835-60. PubMed ID: 3047312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients.
    Dray-Charier N; Paul A; Scoazec JY; Veissière D; Mergey M; Capeau J; Soubrane O; Housset C
    Hepatology; 1999 Jun; 29(6):1624-34. PubMed ID: 10347100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium.
    Zhang L; Button B; Gabriel SE; Burkett S; Yan Y; Skiadopoulos MH; Dang YL; Vogel LN; McKay T; Mengos A; Boucher RC; Collins PL; Pickles RJ
    PLoS Biol; 2009 Jul; 7(7):e1000155. PubMed ID: 19621064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of
    Dickerhof N; Isles V; Pattemore P; Hampton MB; Kettle AJ
    J Biol Chem; 2019 Sep; 294(36):13502-13514. PubMed ID: 31341024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.