These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20089668)

  • 1. CFTR-mediated halide transport in phagosomes of human neutrophils.
    Painter RG; Marrero L; Lombard GA; Valentine VG; Nauseef WM; Wang G
    J Leukoc Biol; 2010 May; 87(5):933-42. PubMed ID: 20089668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride transport in functionally active phagosomes isolated from Human neutrophils.
    Aiken ML; Painter RG; Zhou Y; Wang G
    Free Radic Biol Med; 2012 Dec; 53(12):2308-17. PubMed ID: 23089227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils.
    Zhou Y; Song K; Painter RG; Aiken M; Reiser J; Stanton BA; Nauseef WM; Wang G
    J Innate Immun; 2013; 5(3):219-30. PubMed ID: 23486169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR targeting during activation of human neutrophils.
    Ng HP; Valentine VG; Wang G
    J Leukoc Biol; 2016 Dec; 100(6):1413-1424. PubMed ID: 27406994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis.
    Painter RG; Valentine VG; Lanson NA; Leidal K; Zhang Q; Lombard G; Thompson C; Viswanathan A; Nauseef WM; Wang G; Wang G
    Biochemistry; 2006 Aug; 45(34):10260-9. PubMed ID: 16922501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule-facilitated anion transporters in cells for a novel therapeutic approach to cystic fibrosis.
    Fiore M; Cossu C; Capurro V; Picco C; Ludovico A; Mielczarek M; Carreira-Barral I; Caci E; Baroni D; Quesada R; Moran O
    Br J Pharmacol; 2019 Jun; 176(11):1764-1779. PubMed ID: 30825185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.
    Painter RG; Bonvillain RW; Valentine VG; Lombard GA; LaPlace SG; Nauseef WM; Wang G
    J Leukoc Biol; 2008 Jun; 83(6):1345-53. PubMed ID: 18353929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages.
    Haggie PM; Verkman AS
    J Biol Chem; 2007 Oct; 282(43):31422-8. PubMed ID: 17724021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt, chloride, bleach, and innate host defense.
    Wang G; Nauseef WM
    J Leukoc Biol; 2015 Aug; 98(2):163-72. PubMed ID: 26048979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice.
    Ng HP; Zhou Y; Song K; Hodges CA; Drumm ML; Wang G
    PLoS One; 2014; 9(9):e106813. PubMed ID: 25184794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR.
    MacVinish LJ; Cope G; Ropenga A; Cuthbert AW
    Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles.
    Barriere H; Bagdany M; Bossard F; Okiyoneda T; Wojewodka G; Gruenert D; Radzioch D; Lukacs GL
    Mol Biol Cell; 2009 Jul; 20(13):3125-41. PubMed ID: 19420138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.
    Guerra L; D'Oria S; Favia M; Castellani S; Santostasi T; Polizzi AM; Mariggiò MA; Gallo C; Casavola V; Montemurro P; Leonetti G; Manca A; Conese M
    Pediatr Pulmonol; 2017 Jul; 52(7):900-908. PubMed ID: 28445004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride flux in phagocytes.
    Wang G
    Immunol Rev; 2016 Sep; 273(1):219-31. PubMed ID: 27558337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-(dialkylamino)-4H-1-benzopyran-4-one derivatives modify chloride conductance in CFTR expressing cells.
    Mazzei M; Nieddu E; Folli C; Caci E; Galietta LV
    Farmaco; 2003 Sep; 58(9):961-70. PubMed ID: 13679192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a Yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators.
    Sui J; Cotard S; Andersen J; Zhu P; Staunton J; Lee M; Lin S
    Assay Drug Dev Technol; 2010 Dec; 8(6):656-68. PubMed ID: 21050066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils.
    Simchowitz L
    J Gen Physiol; 1988 Jun; 91(6):835-60. PubMed ID: 3047312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients.
    Dray-Charier N; Paul A; Scoazec JY; Veissière D; Mergey M; Capeau J; Soubrane O; Housset C
    Hepatology; 1999 Jun; 29(6):1624-34. PubMed ID: 10347100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium.
    Zhang L; Button B; Gabriel SE; Burkett S; Yan Y; Skiadopoulos MH; Dang YL; Vogel LN; McKay T; Mengos A; Boucher RC; Collins PL; Pickles RJ
    PLoS Biol; 2009 Jul; 7(7):e1000155. PubMed ID: 19621064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of
    Dickerhof N; Isles V; Pattemore P; Hampton MB; Kettle AJ
    J Biol Chem; 2019 Sep; 294(36):13502-13514. PubMed ID: 31341024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.