These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20089714)

  • 1. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load.
    Karabina A; Kazmierczak K; Szczesna-Cordary D; Moore JR
    Arch Biochem Biophys; 2015 Aug; 580():14-21. PubMed ID: 26116789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D; Zhao J; Jones M; Zhi G; Stull J; Potter JD
    J Appl Physiol (1985); 2002 Apr; 92(4):1661-70. PubMed ID: 11896035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin regulatory light chain phosphorylation and strain modulate adenosine diphosphate release from smooth muscle Myosin.
    Khromov AS; Webb MR; Ferenczi MA; Trentham DR; Somlyo AP; Somlyo AV
    Biophys J; 2004 Apr; 86(4):2318-28. PubMed ID: 15041670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle.
    Xeni J; Gittings WB; Caterini D; Huang J; Houston ME; Grange RW; Vandenboom R
    Pflugers Arch; 2011 Aug; 462(2):349-58. PubMed ID: 21499697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers.
    Patel JR; Diffee GM; Moss RL
    Biophys J; 1996 May; 70(5):2333-40. PubMed ID: 9172757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue.
    Karatzaferi C; Franks-Skiba K; Cooke R
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R948-55. PubMed ID: 18077511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase.
    Ryder JW; Lau KS; Kamm KE; Stull JT
    J Biol Chem; 2007 Jul; 282(28):20447-54. PubMed ID: 17504755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the actomyosin interaction during fatigue of skeletal muscle.
    Cooke R
    Muscle Nerve; 2007 Dec; 36(6):756-77. PubMed ID: 17823954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation.
    Vandenboom R
    Compr Physiol; 2016 Dec; 7(1):171-212. PubMed ID: 28135003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin sliding velocity on pure myosin isoforms from hindlimb unloaded mice.
    Maffei M; Longa E; Qaisar R; Agoni V; Desaphy JF; Camerino DC; Bottinelli R; Canepari M
    Acta Physiol (Oxf); 2014 Dec; 212(4):316-29. PubMed ID: 24888432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory light chain mutations affect myosin motor function and kinetics.
    Chaudoir BM; Kowalczyk PA; Chisholm RL
    J Cell Sci; 1999 May; 112 ( Pt 10)():1611-20. PubMed ID: 10212154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered kinetics of contraction in skeletal muscle fibers containing a mutant myosin regulatory light chain with reduced divalent cation binding.
    Diffee GM; Patel JR; Reinach FC; Greaser ML; Moss RL
    Biophys J; 1996 Jul; 71(1):341-50. PubMed ID: 8804617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle.
    Stull JT; Kamm KE; Vandenboom R
    Arch Biochem Biophys; 2011 Jun; 510(2):120-8. PubMed ID: 21284933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory light chains modulate in vitro actin motility driven by skeletal heavy meromyosin.
    Vikhoreva NN; Månsson A
    Biochem Biophys Res Commun; 2010 Dec; 403(1):1-6. PubMed ID: 20946876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of interface between regulatory and essential light chains hampers phosphorylation-dependent activation of smooth muscle myosin.
    Ni S; Hong F; Haldeman BD; Baker JE; Facemyer KC; Cremo CR
    J Biol Chem; 2012 Jun; 287(26):22068-79. PubMed ID: 22549781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation.
    Greenberg MJ; Mealy TR; Watt JD; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2009 Aug; 297(2):R265-74. PubMed ID: 19458282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ionic strength on the actomyosin reaction steps in contracting skeletal muscle fibers.
    Iwamoto H
    Biophys J; 2000 Jun; 78(6):3138-49. PubMed ID: 10827990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers.
    Yamaguchi M; Kimura M; Li ZB; Ohno T; Takemori S; Hoh JF; Yagi N
    Am J Physiol Cell Physiol; 2016 Apr; 310(8):C692-700. PubMed ID: 26911280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin light chain functions.
    Schaub MC; Jauch A; Walzthoeny D; Wallimann T
    Biomed Biochim Acta; 1986; 45(1-2):S39-44. PubMed ID: 3964245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.