These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20089914)

  • 1. Feedforward inhibition determines the angular tuning of vibrissal responses in the principal trigeminal nucleus.
    Bellavance MA; Demers M; Deschênes M
    J Neurosci; 2010 Jan; 30(3):1057-63. PubMed ID: 20089914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular tuning bias of vibrissa-responsive cells in the paralemniscal pathway.
    Furuta T; Nakamura K; Deschenes M
    J Neurosci; 2006 Oct; 26(41):10548-57. PubMed ID: 17035540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity of direction tuning among responses to stimulation of different whiskers in neurons of rat barrel cortex.
    Kida H; Shimegi S; Sato H
    J Neurophysiol; 2005 Sep; 94(3):2004-18. PubMed ID: 15972836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-fiber depletion alters response properties of neurons in trigeminal nucleus principalis.
    Kwan CL; Demaro JA; Hu JW; Jacquin MF; Sessle BJ
    J Neurophysiol; 1999 Feb; 81(2):435-46. PubMed ID: 10036296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis.
    Minnery BS; Simons DJ
    J Neurophysiol; 2003 Jan; 89(1):40-56. PubMed ID: 12522158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat.
    Miyazaki M; Tanaka I; Ezure K
    Exp Brain Res; 1999 Nov; 129(2):191-200. PubMed ID: 10591893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neonatal axoplasmic transport attenuation on the response properties of vibrissae-sensitive neurons in the trigeminal principal sensory nucleus of the rat.
    Chiaia NL; Zhang S; Crissman RS; Rhoades RW
    Somatosens Mot Res; 2000; 17(3):273-83. PubMed ID: 10994597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat.
    Athanassiadis T; Westberg KG; Olsson KA; Kolta A
    Eur J Neurosci; 2005 Dec; 22(12):3099-110. PubMed ID: 16367776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels.
    Kyriazi HT; Carvell GE; Brumberg JC; Simons DJ
    J Neurophysiol; 1996 Feb; 75(2):547-60. PubMed ID: 8714634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation of Stimulus Speed and Direction in Vibrissal-Sensitive Regions of the Trigeminal Nuclei: A Comparison of Single Unit and Population Responses.
    Kaloti AS; Johnson EC; Bresee CS; Naufel SN; Perich MG; Jones DL; Hartmann MJ
    PLoS One; 2016; 11(7):e0158399. PubMed ID: 27463524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial gradients and inhibitory summation in the rat whisker barrel system.
    Brumberg JC; Pinto DJ; Simons DJ
    J Neurophysiol; 1996 Jul; 76(1):130-40. PubMed ID: 8836214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex.
    Foeller E; Celikel T; Feldman DE
    J Neurophysiol; 2005 Dec; 94(6):4387-400. PubMed ID: 16162832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex.
    Lee SH; Simons DJ
    J Neurophysiol; 2004 Jan; 91(1):223-9. PubMed ID: 14507984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of inhibitory inputs on rate and timing of responses in the anteroventral cochlear nucleus.
    Gai Y; Carney LH
    J Neurophysiol; 2008 Mar; 99(3):1077-95. PubMed ID: 18199821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex.
    Wilent WB; Contreras D
    Nat Neurosci; 2005 Oct; 8(10):1364-70. PubMed ID: 16158064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory control of nociceptive responses of trigeminal spinal nucleus cells by somatosensory corticofugal projection in rat.
    Malmierca E; Martin YB; Nuñez A
    Neuroscience; 2012 Sep; 221():115-24. PubMed ID: 22796078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.
    Lavallée P; Urbain N; Dufresne C; Bokor H; Acsády L; Deschênes M
    J Neurosci; 2005 Aug; 25(33):7489-98. PubMed ID: 16107636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat.
    Bourque MJ; Kolta A
    J Neurophysiol; 2001 Nov; 86(5):2583-96. PubMed ID: 11698544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dorsal raphe nucleus stimulation modulates the response of layers IV and V barrel cortical neurons in rat.
    Sheibani V; Farazifard R
    Brain Res Bull; 2006 Feb; 68(6):430-5. PubMed ID: 16459198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic modulation of vibrissal receptive fields in trigeminal nuclei.
    Timofeeva E; Dufresne C; Sík A; Zhang ZW; Deschênes M
    J Neurosci; 2005 Oct; 25(40):9135-43. PubMed ID: 16207872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.