BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20090182)

  • 21. A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media.
    Glaser AK; Kanick SC; Zhang R; Arce P; Pogue BW
    Biomed Opt Express; 2013 May; 4(5):741-59. PubMed ID: 23667790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulations in anomalous radiative transfer: tutorial.
    Binzoni T; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):1053-1060. PubMed ID: 36215535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Monte Carlo Simulation for Light Propagation in Tissue.
    Periyasamy V; Pramanik M
    IEEE Rev Biomed Eng; 2017; 10():122-135. PubMed ID: 28816674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comment on "A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation".
    Fang Q
    Biomed Opt Express; 2011 Apr; 2(5):1258-64. PubMed ID: 21559136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media.
    Helton M; Zerafa S; Vishwanath K; Mycek MA
    Sci Rep; 2022 Nov; 12(1):18979. PubMed ID: 36347893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hardware acceleration of a Monte Carlo simulation for photodynamic therapy [corrected] treatment planning.
    Lo WC; Redmond K; Luu J; Chow P; Rose J; Lilge L
    J Biomed Opt; 2009; 14(1):014019. PubMed ID: 19256707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit.
    Leung TS; Powell S
    J Biomed Opt; 2010; 15(5):055007. PubMed ID: 21054089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallelized Monte Carlo software to efficiently simulate the light propagation in arbitrarily shaped objects and aligned scattering media.
    Zoller CJ; Hohmann A; Foschum F; Geiger S; Geiger M; Ertl TP; Kienle A
    J Biomed Opt; 2018 Jun; 23(6):1-12. PubMed ID: 29935015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer simulation of the skin reflectance spectra.
    Meglinski IV; Matcher SJ
    Comput Methods Programs Biomed; 2003 Feb; 70(2):179-86. PubMed ID: 12507793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues.
    Wang L; Jacques SL; Zheng L
    Comput Methods Programs Biomed; 1997 Nov; 54(3):141-50. PubMed ID: 9421660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategy of boundary discretization in numerical simulation of laser propagation in skin tissue with vascular lesions.
    Jia H; Chen B; Li D; Jin Y
    Math Biosci Eng; 2021 Mar; 18(3):2455-2472. PubMed ID: 33892555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.