These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 20090828)

  • 1. Associating genes and protein complexes with disease via network propagation.
    Vanunu O; Magger O; Ruppin E; Shlomi T; Sharan R
    PLoS Comput Biol; 2010 Jan; 6(1):e1000641. PubMed ID: 20090828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.
    Zhu J; Qin Y; Liu T; Wang J; Zheng X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S5. PubMed ID: 23734762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations.
    Guo X; Gao L; Wei C; Yang X; Zhao Y; Dong A
    PLoS One; 2011; 6(9):e24171. PubMed ID: 21912671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The power of protein interaction networks for associating genes with diseases.
    Navlakha S; Kingsford C
    Bioinformatics; 2010 Apr; 26(8):1057-63. PubMed ID: 20185403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProSim: A Method for Prioritizing Disease Genes Based on Protein Proximity and Disease Similarity.
    Ganegoda GU; Sheng Y; Wang J
    Biomed Res Int; 2015; 2015():213750. PubMed ID: 26339594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NDRC: A Disease-Causing Genes Prioritized Method Based on Network Diffusion and Rank Concordance.
    Fang M; Hu X; Wang Y; Zhao J; Shen X; He T
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):521-7. PubMed ID: 26080386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide predicting disease-related protein complexes by walking on the heterogeneous network based on data integration and laplacian normalization.
    Liu Z; Luo J
    Comput Biol Chem; 2017 Aug; 69():41-47. PubMed ID: 28554120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking on a tissue-specific disease-protein-complex heterogeneous network for the discovery of disease-related protein complexes.
    Jacquemin T; Jiang R
    Biomed Res Int; 2013; 2013():732650. PubMed ID: 24455720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential C3NET reveals disease networks of direct physical interactions.
    Altay G; Asim M; Markowetz F; Neal DE
    BMC Bioinformatics; 2011 Jul; 12():296. PubMed ID: 21777411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new multi-scale method to reveal hierarchical modular structures in biological networks.
    Jiao QJ; Huang Y; Shen HB
    Mol Biosyst; 2016 Nov; 12(12):3724-3733. PubMed ID: 27783080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inductive matrix completion for predicting gene-disease associations.
    Natarajan N; Dhillon IS
    Bioinformatics; 2014 Jun; 30(12):i60-68. PubMed ID: 24932006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.
    Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y
    Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.