These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20090999)

  • 41. Photonic crystal nanostructures for optical biosensing applications.
    Dorfner D; Zabel T; Hürlimann T; Hauke N; Frandsen L; Rant U; Abstreiter G; Finley J
    Biosens Bioelectron; 2009 Aug; 24(12):3688-92. PubMed ID: 19501502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiplexed detection of lectins using integrated glycan-coated microring resonators.
    Ghasemi F; Hosseini ES; Song X; Gottfried DS; Chamanzar M; Raeiszadeh M; Cummings RD; Eftekhar AA; Adibi A
    Biosens Bioelectron; 2016 Jun; 80():682-690. PubMed ID: 26826877
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide.
    Liu Q; Kee JS; Park MK
    Opt Express; 2013 Mar; 21(5):5897-909. PubMed ID: 23482158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy.
    Liu J; Eddings MA; Miles AR; Bukasov R; Gale BK; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4296-301. PubMed ID: 19408947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Harnessing optical forces in integrated photonic circuits.
    Li M; Pernice WH; Xiong C; Baehr-Jones T; Hochberg M; Tang HX
    Nature; 2008 Nov; 456(7221):480-4. PubMed ID: 19037311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators.
    Zhang W; Serna S; Le Roux X; Vivien L; Cassan E
    Opt Lett; 2016 Feb; 41(3):532-5. PubMed ID: 26907416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.
    Hartmann DM; Nevill JT; Pettigrew KI; Votaw G; Kung PJ; Crenshaw HC
    Lab Chip; 2008 Apr; 8(4):609-16. PubMed ID: 18369517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE.
    Errando-Herranz C; Saharil F; Romero AM; Sandström N; Shafagh RZ; van der Wijngaart W; Haraldsson T; Gylfason KB
    Opt Express; 2013 Sep; 21(18):21293-8. PubMed ID: 24104003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Compact on-chip temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators.
    Andersen TB; Han Z; Bozhevolnyi SI
    Sensors (Basel); 2011; 11(2):1992-2000. PubMed ID: 22319394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels.
    Choi CJ; Cunningham BT
    Lab Chip; 2006 Oct; 6(10):1373-80. PubMed ID: 17102852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.
    Bozhevolnyi SI; Volkov VS; Devaux E; Laluet JY; Ebbesen TW
    Nature; 2006 Mar; 440(7083):508-11. PubMed ID: 16554814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A microwell array platform for picoliter membrane protein assays.
    Binkert A; Studer P; Vörös J
    Small; 2009 May; 5(9):1070-7. PubMed ID: 19242942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk.
    Suárez G; Jin YH; Auerswald J; Berchtold S; Knapp HF; Diserens JM; Leterrier Y; Månson JA; Voirin G
    Lab Chip; 2009 Jun; 9(11):1625-30. PubMed ID: 19458872
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel S-Bend Resonator Based on a Multi-Mode Waveguide with Mode Discrimination for a Refractive Index Sensor.
    Kim DH; Jeon SJ; Lee JS; Hong SH; Choi YW
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays.
    Xu DX; Vachon M; Densmore A; Ma R; Janz S; Delâge A; Lapointe J; Cheben P; Schmid JH; Post E; Messaoudène S; Fédéli JM
    Opt Express; 2010 Oct; 18(22):22867-79. PubMed ID: 21164626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.