BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20091012)

  • 21. Optimized commercial desktop cutter technique for rapid-prototyping of microfluidic devices and application to Taylor dispersion.
    Taylor AW; Harris DM
    Rev Sci Instrum; 2019 Nov; 90(11):116102. PubMed ID: 31779402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping.
    Bhagat AA; Jothimuthu P; Papautsky I
    Lab Chip; 2007 Sep; 7(9):1192-7. PubMed ID: 17713619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes.
    de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC
    Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM
    Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.
    Cooksey GA; Plant AL; Atencia J
    Lab Chip; 2009 May; 9(9):1298-300. PubMed ID: 19370253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices.
    Dossi N; Petrazzi S; Terzi F; Toniolo R; Bontempelli G
    Talanta; 2019 Jul; 199():14-20. PubMed ID: 30952237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid prototyping for neuroscience and neural engineering.
    Tek P; Chiganos TC; Mohammed JS; Eddington DT; Fall CP; Ifft P; Rousche PJ
    J Neurosci Methods; 2008 Jul; 172(2):263-9. PubMed ID: 18565590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates.
    Perry H; Greiner C; Georgakoudi I; Cronin-Golomb M; Omenetto FG
    Rev Sci Instrum; 2007 Apr; 78(4):044302. PubMed ID: 17477682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices.
    Wu D; Chen QD; Niu LG; Wang JN; Wang J; Wang R; Xia H; Sun HB
    Lab Chip; 2009 Aug; 9(16):2391-4. PubMed ID: 19636471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.