These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20091012)

  • 21. Optimized commercial desktop cutter technique for rapid-prototyping of microfluidic devices and application to Taylor dispersion.
    Taylor AW; Harris DM
    Rev Sci Instrum; 2019 Nov; 90(11):116102. PubMed ID: 31779402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping.
    Bhagat AA; Jothimuthu P; Papautsky I
    Lab Chip; 2007 Sep; 7(9):1192-7. PubMed ID: 17713619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes.
    de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC
    Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM
    Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.
    Cooksey GA; Plant AL; Atencia J
    Lab Chip; 2009 May; 9(9):1298-300. PubMed ID: 19370253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices.
    Dossi N; Petrazzi S; Terzi F; Toniolo R; Bontempelli G
    Talanta; 2019 Jul; 199():14-20. PubMed ID: 30952237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid prototyping for neuroscience and neural engineering.
    Tek P; Chiganos TC; Mohammed JS; Eddington DT; Fall CP; Ifft P; Rousche PJ
    J Neurosci Methods; 2008 Jul; 172(2):263-9. PubMed ID: 18565590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates.
    Perry H; Greiner C; Georgakoudi I; Cronin-Golomb M; Omenetto FG
    Rev Sci Instrum; 2007 Apr; 78(4):044302. PubMed ID: 17477682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices.
    Wu D; Chen QD; Niu LG; Wang JN; Wang J; Wang R; Xia H; Sun HB
    Lab Chip; 2009 Aug; 9(16):2391-4. PubMed ID: 19636471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.