BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20091071)

  • 21. Assessing allergen levels in peach and nectarine cultivars.
    Ahrazem O; Jimeno L; López-Torrejón G; Herrero M; Espada JL; Sánchez-Monge R; Duffort O; Barber D; Salcedo G
    Ann Allergy Asthma Immunol; 2007 Jul; 99(1):42-7. PubMed ID: 17650828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypobaric Treatment Effects on Chilling Injury, Mitochondrial Dysfunction, and the Ascorbate-Glutathione (AsA-GSH) Cycle in Postharvest Peach Fruit.
    Song L; Wang J; Shafi M; Liu Y; Wang J; Wu J; Wu A
    J Agric Food Chem; 2016 Jun; 64(22):4665-74. PubMed ID: 27195461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis.
    Wang Q; Lai T; Qin G; Tian S
    Plant Cell Physiol; 2009 Feb; 50(2):230-42. PubMed ID: 19068492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism.
    Gao H; Lu Z; Yang Y; Wang D; Yang T; Cao M; Cao W
    Food Chem; 2018 Apr; 245():659-666. PubMed ID: 29287423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of nitric oxide on fatty acid composition in peach fruits during storage.
    Zhu S; Zhou J
    J Agric Food Chem; 2006 Dec; 54(25):9447-52. PubMed ID: 17147431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.
    Jin P; Zhu H; Wang L; Shan T; Zheng Y
    Food Chem; 2014 Oct; 161():87-93. PubMed ID: 24837925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in aroma volatile compounds and ethylene production during "Hujingmilu" peach (Prunus persica L.) fruit development.
    Zhang XM; Jia HJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):41-6. PubMed ID: 15692177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves.
    Sanchez-Ballesta MT; Rodrigo MJ; Lafuente MT; Granell A; Zacarias L
    J Agric Food Chem; 2004 Apr; 52(7):1950-7. PubMed ID: 15053535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sugar metabolism in relation to chilling tolerance of loquat fruit.
    Cao S; Yang Z; Zheng Y
    Food Chem; 2013 Jan; 136(1):139-43. PubMed ID: 23017404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach.
    Almeida AM; Urra C; Moraga C; Jego M; Flores A; Meisel L; González M; Infante R; Defilippi BG; Campos-Vargas R; Orellana A
    J Proteomics; 2016 Jan; 131():71-81. PubMed ID: 26459401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.
    Qin G; Meng X; Wang Q; Tian S
    J Proteome Res; 2009 May; 8(5):2449-62. PubMed ID: 19239264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development.
    Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T
    Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exogenous Melatonin Treatment Increases Chilling Tolerance and Induces Defense Response in Harvested Peach Fruit during Cold Storage.
    Cao S; Song C; Shao J; Bian K; Chen W; Yang Z
    J Agric Food Chem; 2016 Jun; 64(25):5215-22. PubMed ID: 27281292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbohydrate metabolism as related to high-temperature conditioning and peel disorders occurring during storage of citrus fruit.
    Holland N; Menezes HC; Lafuente MT
    J Agric Food Chem; 2005 Nov; 53(22):8790-6. PubMed ID: 16248586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE).
    Nilo R; Saffie C; Lilley K; Baeza-Yates R; Cambiazo V; Campos-Vargas R; González M; Meisel LA; Retamales J; Silva H; Orellana A
    BMC Genomics; 2010 Jan; 11():43. PubMed ID: 20082721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence.
    Wu X; Jiang L; Yu M; An X; Ma R; Yu Z
    J Proteomics; 2016 Sep; 147():197-211. PubMed ID: 27288903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit.
    Sapitnitskaya M; Maul P; McCollum GT; Guy CL; Weiss B; Samach A; Porat R
    J Exp Bot; 2006; 57(12):2943-53. PubMed ID: 16908505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbohydrate availability affects growth and metabolism in peach fruit.
    Morandi B; Corelli Grappadelli L; Rieger M; Lo Bianco R
    Physiol Plant; 2008 Jun; 133(2):229-41. PubMed ID: 18298408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copigmentation triggers the development of skin burning disorder on peach and nectarine fruit [Prunus persica (L.) Batsch].
    Cantín CM; Tian L; Qin X; Crisosto CH
    J Agric Food Chem; 2011 Mar; 59(6):2393-402. PubMed ID: 21361290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing.
    Bassett CL; Artlip TS; Callahan AM
    Planta; 2002 Aug; 215(4):679-88. PubMed ID: 12172852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.