These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20091302)

  • 21. Tenascin C may regulate the recruitment of smooth muscle cells during coronary artery development.
    Ando K; Takahashi M; Yamagishi T; Miyagawa-Tomita S; Imanaka-Yoshida K; Yoshida T; Nakajima Y
    Differentiation; 2011 Jun; 81(5):299-306. PubMed ID: 21497984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns.
    Norden J; Grieskamp T; Lausch E; van Wijk B; van den Hoff MJ; Englert C; Petry M; Mommersteeg MT; Christoffels VM; Niederreither K; Kispert A
    Circ Res; 2010 Apr; 106(7):1212-20. PubMed ID: 20185795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growing the coronary tree: the quail saga.
    Sedmera D; Watanabe M
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Sep; 288(9):933-5. PubMed ID: 16906547
    [No Abstract]   [Full Text] [Related]  

  • 24. Modeling development of the epicardium and coronary vasculature: in vitro veritas?
    Hatcher CJ; Basson CT
    Circ Res; 2003 Mar; 92(5):477-9. PubMed ID: 12649259
    [No Abstract]   [Full Text] [Related]  

  • 25. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium.
    Olivey HE; Mundell NA; Austin AF; Barnett JV
    Dev Dyn; 2006 Jan; 235(1):50-9. PubMed ID: 16245329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular and molecular mechanisms of coronary vessel development.
    Mu H; Ohashi R; Lin P; Yao Q; Chen C
    Vasc Med; 2005 Feb; 10(1):37-44. PubMed ID: 15920999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity.
    Lu J; Landerholm TE; Wei JS; Dong XR; Wu SP; Liu X; Nagata K; Inagaki M; Majesky MW
    Dev Biol; 2001 Dec; 240(2):404-18. PubMed ID: 11784072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chapter 9. Development of coronary vessels.
    Dong XR; Maguire CT; Wu SP; Majesky MW
    Methods Enzymol; 2008; 445():209-28. PubMed ID: 19022061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect.
    Gittenberger-de Groot AC; Eralp I; Lie-Venema H; Bartelings MM; Poelmann RE
    Acta Paediatr Suppl; 2004 Dec; 93(446):13-9. PubMed ID: 15702665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling via the Tgf-beta type I receptor Alk5 in heart development.
    Sridurongrit S; Larsson J; Schwartz R; Ruiz-Lozano P; Kaartinen V
    Dev Biol; 2008 Oct; 322(1):208-18. PubMed ID: 18718461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development. ES cells to the rescue.
    Chien KR; Moretti A; Laugwitz KL
    Science; 2004 Oct; 306(5694):239-40. PubMed ID: 15472069
    [No Abstract]   [Full Text] [Related]  

  • 32. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells.
    Wessels A; Pérez-Pomares JM
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jan; 276(1):43-57. PubMed ID: 14699633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the human heart.
    Sylva M; van den Hoff MJ; Moorman AF
    Am J Med Genet A; 2014 Jun; 164A(6):1347-71. PubMed ID: 23633400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The multiple phases and faces of wnt signaling during cardiac differentiation and development.
    Gessert S; Kühl M
    Circ Res; 2010 Jul; 107(2):186-99. PubMed ID: 20651295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sizing up the heart: development redux in disease.
    Olson EN; Schneider MD
    Genes Dev; 2003 Aug; 17(16):1937-56. PubMed ID: 12893779
    [No Abstract]   [Full Text] [Related]  

  • 36. Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish.
    Cheng F; Miao L; Wu Q; Gong X; Xiong J; Zhang J
    Development; 2016 Oct; 143(19):3522-3531. PubMed ID: 27578788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CCBE1 is required for coronary vessel development and proper coronary artery stem formation in the mouse heart.
    Bonet F; Pereira PNG; Bover O; Marques S; Inácio JM; Belo JA
    Dev Dyn; 2018 Oct; 247(10):1135-1145. PubMed ID: 30204931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. bves: A novel gene expressed during coronary blood vessel development.
    Reese DE; Zavaljevski M; Streiff NL; Bader D
    Dev Biol; 1999 May; 209(1):159-71. PubMed ID: 10208750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis.
    Azambuja AP; Portillo-Sánchez V; Rodrigues MV; Omae SV; Schechtman D; Strauss BE; Costanzi-Strauss E; Krieger JE; Perez-Pomares JM; Xavier-Neto J
    Circ Res; 2010 Jul; 107(2):204-16. PubMed ID: 20522805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels.
    Trembley MA; Velasquez LS; de Mesy Bentley KL; Small EM
    Development; 2015 Jan; 142(1):21-30. PubMed ID: 25516967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.