These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20091355)
1. Spreading speeds in slowly oscillating environments. Hamel F; Fayard J; Roques L Bull Math Biol; 2010 Jul; 72(5):1166-91. PubMed ID: 20091355 [TBL] [Abstract][Full Text] [Related]
2. On a periodic-like behavior of a delayed density-dependent branching process. Fujimagari T Math Biosci; 2007 Mar; 206(1):128-33. PubMed ID: 17070864 [TBL] [Abstract][Full Text] [Related]
3. Movement toward better environments and the evolution of rapid diffusion. Cantrell RS; Cosner C; Lou Y Math Biosci; 2006 Dec; 204(2):199-214. PubMed ID: 17070869 [TBL] [Abstract][Full Text] [Related]
4. Regimes of biological invasion in a predator-prey system with the Allee effect. Petrovskii S; Morozov A; Li BL Bull Math Biol; 2005 May; 67(3):637-61. PubMed ID: 15820745 [TBL] [Abstract][Full Text] [Related]
5. Allee-like effects in metapopulation dynamics. Zhou SR; Wang G Math Biosci; 2004 May; 189(1):103-13. PubMed ID: 15051417 [TBL] [Abstract][Full Text] [Related]
6. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. Weinberger HF J Math Biol; 2002 Dec; 45(6):511-48. PubMed ID: 12439589 [TBL] [Abstract][Full Text] [Related]
7. The effect of the spatial configuration of habitat fragmentation on invasive spread. Kinezaki N; Kawasaki K; Shigesada N Theor Popul Biol; 2010 Dec; 78(4):298-308. PubMed ID: 20875440 [TBL] [Abstract][Full Text] [Related]
8. Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models. Lewis MA; Li B Bull Math Biol; 2012 Oct; 74(10):2383-402. PubMed ID: 22893042 [TBL] [Abstract][Full Text] [Related]
9. Invasion dynamics of epidemic with the Allee effect. Wang W; Liu H; Li Z; Guo Z; Yang Y Biosystems; 2011 Jul; 105(1):25-33. PubMed ID: 21457751 [TBL] [Abstract][Full Text] [Related]
10. Impact of directed movement on invasive spread in periodic patchy environments. Kawasaki K; Asano K; Shigesada N Bull Math Biol; 2012 Jun; 74(6):1448-67. PubMed ID: 22234418 [TBL] [Abstract][Full Text] [Related]
11. The effect of habitat fragmentation on cyclic population dynamics: a numerical study. Strohm S; Tyson R Bull Math Biol; 2009 Aug; 71(6):1323-48. PubMed ID: 19352778 [TBL] [Abstract][Full Text] [Related]
12. Extinction conditions for isolated populations with Allee effect. Méndez V; Sans C; Llopis I; Campos D Math Biosci; 2011 Jul; 232(1):78-86. PubMed ID: 21570412 [TBL] [Abstract][Full Text] [Related]
13. Periodic matrix population models: growth rate, basic reproduction number, and entropy. Bacaër N Bull Math Biol; 2009 Oct; 71(7):1781-92. PubMed ID: 19412636 [TBL] [Abstract][Full Text] [Related]
14. Saddle-point approximations, integrodifference equations, and invasions. Kot M; Neubert MG Bull Math Biol; 2008 Aug; 70(6):1790-826. PubMed ID: 18648885 [TBL] [Abstract][Full Text] [Related]
15. Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system. Mukhopadhyay B; Bhattacharyya R Bull Math Biol; 2006 Feb; 68(2):293-313. PubMed ID: 16794932 [TBL] [Abstract][Full Text] [Related]
16. Persistence of structured populations in random environments. Benaïm M; Schreiber SJ Theor Popul Biol; 2009 Aug; 76(1):19-34. PubMed ID: 19358861 [TBL] [Abstract][Full Text] [Related]
17. Extinction and chaotic patterns in map lattices under hostile conditions. Méndez V; Campos D; Llopis I; Horsthemke W Bull Math Biol; 2010 Feb; 72(2):432-43. PubMed ID: 19760463 [TBL] [Abstract][Full Text] [Related]
18. Synchrony of spatial populations induced by colored environmental noise and dispersal. Liu Z; Gao M; Zhang F; Li Z Biosystems; 2009 Nov; 98(2):115-21. PubMed ID: 19682535 [TBL] [Abstract][Full Text] [Related]
19. Density dependent behavior at habitat boundaries and the Allee effect. Cantrell RS; Cosner C Bull Math Biol; 2007 Oct; 69(7):2339-60. PubMed ID: 17557188 [TBL] [Abstract][Full Text] [Related]
20. Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Baeumer B; Kovács M; Meerschaert MM Bull Math Biol; 2007 Oct; 69(7):2281-97. PubMed ID: 17546475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]