These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20091675)

  • 1. Solvation effects in calculated electrostatic association free energies for the C3d-CR2 complex and comparison with experimental data.
    Cheung AS; Kieslich CA; Yang J; Morikis D
    Biopolymers; 2010 Jun; 93(6):509-19. PubMed ID: 20091675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunophysical exploration of C3d-CR2(CCP1-2) interaction using molecular dynamics and electrostatics.
    Zhang L; Mallik B; Morikis D
    J Mol Biol; 2007 Jun; 369(2):567-83. PubMed ID: 17434528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study.
    Gilbert HE; Eaton JT; Hannan JP; Holers VM; Perkins SJ
    J Mol Biol; 2005 Feb; 346(3):859-73. PubMed ID: 15713468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrostatic nature of C3d-complement receptor 2 association.
    Morikis D; Lambris JD
    J Immunol; 2004 Jun; 172(12):7537-47. PubMed ID: 15187133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated computational framework for the analysis of electrostatic similarities of proteins.
    Kieslich CA; Morikis D; Yang J; Gunopulos D
    Biotechnol Prog; 2011; 27(2):316-25. PubMed ID: 21485028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: implications for the controversy regarding the CR2/C3d cocrystal structure.
    Isenman DE; Leung E; Mackay JD; Bagby S; van den Elsen JM
    J Immunol; 2010 Feb; 184(4):1946-55. PubMed ID: 20083651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d.
    Hannan JP; Young KA; Guthridge JM; Asokan R; Szakonyi G; Chen XS; Holers VM
    J Mol Biol; 2005 Feb; 346(3):845-58. PubMed ID: 15713467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic Steering Accelerates C3d:CR2 Association.
    Mohan RR; Huber GA; Morikis D
    J Phys Chem B; 2016 Aug; 120(33):8416-23. PubMed ID: 27092816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical view of the C3d:CR2 binding controversy.
    Mohan RR; Gorham RD; Morikis D
    Mol Immunol; 2015 Mar; 64(1):112-22. PubMed ID: 25433434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d.
    Wan H; Hu JP; Tian XH; Chang S
    Phys Chem Chem Phys; 2013 Jan; 15(4):1241-51. PubMed ID: 23229122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data.
    Gorham RD; Kieslich CA; Nichols A; Sausman NU; Foronda M; Morikis D
    Biopolymers; 2011 Nov; 95(11):746-54. PubMed ID: 21538330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.
    Kieslich CA; Morikis D
    PLoS Comput Biol; 2012; 8(12):e1002840. PubMed ID: 23300422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic exploration of the C3d-FH4 interaction using a computational alanine scan.
    El-Assaad AM; Kieslich CA; Gorham RD; Morikis D
    Mol Immunol; 2011 Sep; 48(15-16):1844-50. PubMed ID: 21683447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of the complex formed between human complement C3d and full-length complement receptor type 2.
    Li K; Okemefuna AI; Gor J; Hannan JP; Asokan R; Holers VM; Perkins SJ
    J Mol Biol; 2008 Dec; 384(1):137-50. PubMed ID: 18804116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking.
    Shaw CD; Storek MJ; Young KA; Kovacs JM; Thurman JM; Holers VM; Hannan JP
    J Mol Biol; 2010 Dec; 404(4):697-710. PubMed ID: 20951140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solvent at antigen-binding site regulated C3d-CR2 interactions through the C-terminal tail of C3d at different ion strengths: insights from molecular dynamics simulation.
    Zhang Y; Guo J; Li L; Liu X; Yao X; Liu H
    Biochim Biophys Acta; 2016 Oct; 1860(10):2220-31. PubMed ID: 27154286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular mechanism of pH-regulating C3d-CR2 interactions: Insights from molecular dynamics simulation.
    Zhang Y; Guo J; Ning L; Tian J; Yao X; Liu H
    Chem Biol Drug Des; 2019 Apr; 93(4):628-637. PubMed ID: 30566277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis.
    Gilson MK; Honig B
    Proteins; 1988; 4(1):7-18. PubMed ID: 3186692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of complement receptor (CR) 2 and CR2-C3d complexes.
    Hannan J; Young K; Szakonyi G; Overduin MJ; Perkins SJ; Chen X; Holers VM
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):983-9. PubMed ID: 12440958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of atomic desolvation energies from the structures of crystallized proteins.
    Zhang C; Vasmatzis G; Cornette JL; DeLisi C
    J Mol Biol; 1997 Apr; 267(3):707-26. PubMed ID: 9126848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.