These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20091765)

  • 1. Exploiting cell-free systems: Implementation and debugging of a system of biotransformations.
    Bujara M; Schümperli M; Billerbeck S; Heinemann M; Panke S
    Biotechnol Bioeng; 2010 Jun; 106(3):376-89. PubMed ID: 20091765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase.
    Jain VK; Tear CJ; Lim CY
    Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and enzymatic routes to dihydroxyacetone phosphate.
    Schümperli M; Pellaux R; Panke S
    Appl Microbiol Biotechnol; 2007 May; 75(1):33-45. PubMed ID: 17318530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis.
    Bujara M; Schümperli M; Pellaux R; Heinemann M; Panke S
    Nat Chem Biol; 2011 May; 7(5):271-7. PubMed ID: 21423171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoring a metabolic pathway.
    Richard JP
    ACS Chem Biol; 2008 Oct; 3(10):605-7. PubMed ID: 18928248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico assessment of cell-free systems.
    Bujara M; Panke S
    Biotechnol Bioeng; 2012 Oct; 109(10):2620-9. PubMed ID: 22528509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic correction of triose phosphate isomerase deficiency in vitro by complementation.
    Ationu A; Humphries A; Bellingham A; Layton M
    Biochem Biophys Res Commun; 1997 Mar; 232(2):528-31. PubMed ID: 9125215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis.
    Frohlich KM; Roberts RA; Housley NA; Audia JP
    J Bacteriol; 2010 Sep; 192(17):4281-8. PubMed ID: 20581209
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Huening KA; Groves JT; Wildenthal JA; Tabita FR; North JA
    Microbiol Spectr; 2024 Apr; 12(4):e0308623. PubMed ID: 38441472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of precursors of quinolinic acid in Escherichia coli.
    Chen J; Tritz GJ
    Microbios; 1976; 16(65-66):207-18. PubMed ID: 196161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transfer in the mechanism of triosephosphate isomerase.
    Harris TK; Cole RN; Comer FI; Mildvan AS
    Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual activity of quinolinate synthase: triose phosphate isomerase and dehydration activities play together to form quinolinate.
    Reichmann D; Couté Y; Ollagnier de Choudens S
    Biochemistry; 2015 Oct; 54(42):6443-6. PubMed ID: 26455817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triosephosphate isomerase deficiency: predictions and facts.
    Orosz F; Vértessy BG; Hollán S; Horányi M; Ovádi J
    J Theor Biol; 1996 Oct; 182(3):437-47. PubMed ID: 8944178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted cooperative games on metabolic networks reveal functionally important reactions.
    Sajitz-Hermstein M; Nikoloski Z
    J Theor Biol; 2012 Dec; 314():192-203. PubMed ID: 22940237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae.
    Compagno C; Boschi F; Ranzi BM
    Biotechnol Prog; 1996; 12(5):591-5. PubMed ID: 8879153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in complex with 1,3-dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis.
    Garavaglia S; Perozzi S; Galeazzi L; Raffaelli N; Rizzi M
    FEBS J; 2009 Nov; 276(22):6615-23. PubMed ID: 19843166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.