These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20091872)

  • 21. Switch-peptides: design and characterization of controllable super-amyloid-forming host-guest peptides as tools for identifying anti-amyloid agents.
    Camus MS; Dos Santos S; Chandravarkar A; Mandal B; Schmid AW; Tuchscherer G; Mutter M; Lashuel HA
    Chembiochem; 2008 Sep; 9(13):2104-12. PubMed ID: 18683159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly.
    Lamm MS; Rajagopal K; Schneider JP; Pochan DJ
    J Am Chem Soc; 2005 Nov; 127(47):16692-700. PubMed ID: 16305260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool.
    Gazit E
    FEBS J; 2005 Dec; 272(23):5971-8. PubMed ID: 16302962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amyloid-like self-assembly of peptide sequences from the adenovirus fiber shaft: insights from molecular dynamics simulations.
    Tamamis P; Kasotakis E; Mitraki A; Archontis G
    J Phys Chem B; 2009 Nov; 113(47):15639-47. PubMed ID: 19863125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular biomimetics: GEPI-based biological routes to technology.
    Tamerler C; Khatayevich D; Gungormus M; Kacar T; Oren EE; Hnilova M; Sarikaya M
    Biopolymers; 2010; 94(1):78-94. PubMed ID: 20091881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein oligomerization through domain swapping: role of inter-molecular interactions and protein concentration.
    Yang S; Levine H; Onuchic JN
    J Mol Biol; 2005 Sep; 352(1):202-11. PubMed ID: 16061250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning the erosion rate of artificial protein hydrogels through control of network topology.
    Shen W; Zhang K; Kornfield JA; Tirrell DA
    Nat Mater; 2006 Feb; 5(2):153-8. PubMed ID: 16444261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible hydrogels from self-assembling genetically engineered protein block copolymers.
    Xu C; Breedveld V; Kopecek J
    Biomacromolecules; 2005; 6(3):1739-49. PubMed ID: 15877401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A
    J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience.
    Cavalli S; Albericio F; Kros A
    Chem Soc Rev; 2010 Jan; 39(1):241-63. PubMed ID: 20023851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels.
    Gao Y; Yang Z; Kuang Y; Ma ML; Li J; Zhao F; Xu B
    Biopolymers; 2010; 94(1):19-31. PubMed ID: 20091873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy.
    Moradian-Oldak J; Paine ML; Lei YP; Fincham AG; Snead ML
    J Struct Biol; 2000 Jul; 131(1):27-37. PubMed ID: 10945967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide fibrillization.
    Hamley IW
    Angew Chem Int Ed Engl; 2007; 46(43):8128-47. PubMed ID: 17935097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide-based methods for the preparation of nanostructured inorganic materials.
    Chen CL; Rosi NL
    Angew Chem Int Ed Engl; 2010 Mar; 49(11):1924-42. PubMed ID: 20183835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.