These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20091914)

  • 1. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations.
    Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks.
    Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG
    Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E
    Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations.
    Douglas T; Pamula E; Hauk D; Wiltfang J; Sivananthan S; Sherry E; Warnke PH
    J Mater Sci Mater Med; 2009 Sep; 20(9):1909-15. PubMed ID: 19415229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary studies of PVA/PVP blends incorporated with HAp and β-TCP bone ceramic as template for hard tissue engineering.
    Uma Maheshwari S; Govindan K; Raja M; Raja A; Pravin MBS; Vasanth Kumar S
    Biomed Mater Eng; 2017; 28(4):401-415. PubMed ID: 28869428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.
    Liu Q; Douglas T; Zamponi C; Becker ST; Sherry E; Sivananthan S; Warnke F; Wiltfang J; Warnke PH
    Clin Oral Implants Res; 2011 Nov; 22(11):1259-64. PubMed ID: 21985282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds.
    Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T
    J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds.
    Detsch R; Schaefer S; Deisinger U; Ziegler G; Seitz H; Leukers B
    J Biomater Appl; 2011 Sep; 26(3):359-80. PubMed ID: 20659962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility.
    Slavin BV; Mirsky NA; Stauber ZM; Nayak VV; Smay JE; Rivera CF; Mijares DQ; Coelho PG; Cronstein BN; Tovar N; Witek L
    Biomed Mater Eng; 2024; 35(4):365-375. PubMed ID: 38578877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular ceramic scaffolds for individual implants.
    Biggemann J; Pezoldt M; Stumpf M; Greil P; Fey T
    Acta Biomater; 2018 Oct; 80():390-400. PubMed ID: 30213769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone.
    Sulaiman SB; Keong TK; Cheng CH; Saim AB; Idrus RB
    Indian J Med Res; 2013 Jun; 137(6):1093-101. PubMed ID: 23852290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction.
    Becker ST; Bolte H; Krapf O; Seitz H; Douglas T; Sivananthan S; Wiltfang J; Sherry E; Warnke PH
    Oral Oncol; 2009 Nov; 45(11):e181-8. PubMed ID: 19720558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering.
    Becker ST; Douglas T; Acil Y; Seitz H; Sivananthan S; Wiltfang J; Warnke PH
    J Mater Sci Mater Med; 2010 Apr; 21(4):1255-62. PubMed ID: 20140699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2011 Jun; 22(6):651-7. PubMed ID: 21044164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ceramic bone replacement material CeraBall seeded with human mesenchymal stem cells.
    Douglas T; Liu Q; Humpe A; Wiltfang J; Sivananthan S; Warnke PH
    Clin Oral Implants Res; 2010 Mar; 21(3):262-7. PubMed ID: 19958377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique.
    Schumacher M; Uhl F; Detsch R; Deisinger U; Ziegler G
    J Mater Sci Mater Med; 2010 Nov; 21(11):3039-48. PubMed ID: 20857322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.