BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20092077)

  • 21. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter.
    Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P
    Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.
    Hudacko A; Sievert A; Sistino J
    J Extra Corpor Technol; 2009 Sep; 41(3):166-71. PubMed ID: 19806800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Combined Extracorporeal Life Support and Continuous Renal Replacement Therapy on Hemodynamic Performance and Gaseous Microemboli Handling Ability in a Simulated Neonatal ECLS System.
    Shank KR; Profeta E; Wang S; O'Connor C; Kunselman AR; Woitas K; Myers JL; Ündar A
    Artif Organs; 2018 Apr; 42(4):365-376. PubMed ID: 28940550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood temperature management and gaseous microemboli creation: an in-vitro analysis.
    Sleep J; Syhre I; Evans E
    J Extra Corpor Technol; 2010 Sep; 42(3):219-22. PubMed ID: 21114225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.
    Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A
    ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of HL-20 roller pump and Rotaflow centrifugal pump on perfusion quality and gaseous microemboli delivery.
    Yee S; Qiu F; Su X; Rider A; Kunselman AR; Guan Y; Undar A
    Artif Organs; 2010 Nov; 34(11):937-43. PubMed ID: 20946282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.
    Reagor JA; Holt DW
    J Extra Corpor Technol; 2016 Mar; 48(1):19-22. PubMed ID: 27134304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators.
    Jabur GN; Sidhu K; Willcox TW; Mitchell SJ
    Perfusion; 2016 Jul; 31(5):409-17. PubMed ID: 26643883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.
    Wang S; Rosenthal T; Kunselman AR; Ündar A
    Artif Organs; 2015 Jan; 39(1):43-52. PubMed ID: 25626579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro evaluation of Capiox FX05 and RX05 oxygenators in neonatal cardiopulmonary bypass circuits with varying venous reservoir and vacuum-assisted venous drainage levels.
    Sathianathan S; Nasir R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2020 Jan; 44(1):28-39. PubMed ID: 30512218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Building a Better Neonatal Extracorporeal Life Support Circuit: Comparison of Hemodynamic Performance and Gaseous Microemboli Handling in Different Pump and Oxygenator Technologies.
    Glass K; Trivedi P; Wang S; Woitas K; Kunselman AR; Ündar A
    Artif Organs; 2017 Apr; 41(4):392-400. PubMed ID: 28397410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Quadrox-i adult hollow fiber oxygenator with integrated arterial filter.
    Guan Y; Su X; McCoach R; Wise R; Kunselman A; Undar A
    J Extra Corpor Technol; 2010 Jun; 42(2):134-8. PubMed ID: 20648898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microemboli in our bypass circuits: a contemporary audit.
    Willcox TW; Mitchell SJ
    J Extra Corpor Technol; 2009 Dec; 41(4):P31-7. PubMed ID: 20092085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of three hollow-fiber membrane oxygenators without integrated arterial filters for neonatal cardiopulmonary bypass.
    Dogal NM; Mathis RK; Lin J; Qiu F; Kunselman A; Undar A
    Perfusion; 2012 Mar; 27(2):132-40. PubMed ID: 22115879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.