These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20092094)

  • 1. Effects of bone density alterations on strain patterns in the pelvis: application of a finite element model.
    Leung AS; Gordon LM; Skrinskas T; Szwedowski T; Whyne CM
    Proc Inst Mech Eng H; 2009 Nov; 223(8):965-79. PubMed ID: 20092094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element model development of a child pelvis with optimization-based material identification.
    Kim JE; Li Z; Ito Y; Huber CD; Shih AM; Eberhardt AW; Yang KH; King AI; Soni BK
    J Biomech; 2009 Sep; 42(13):2191-5. PubMed ID: 19646702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis.
    O'Rourke D; Martelli S; Bottema M; Taylor M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27685017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.
    Watson PJ; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2015 Jan; 229(1):9-19. PubMed ID: 25542612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and experimental validation of a three-dimensional finite element model of the human scapula.
    Gupta S; van der Helm FC; Sterk JC; van Keulen F; Kaptein BL
    Proc Inst Mech Eng H; 2004; 218(2):127-42. PubMed ID: 15116900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone.
    Austman RL; Milner JS; Holdsworth DW; Dunning CE
    J Biomech; 2008 Nov; 41(15):3171-6. PubMed ID: 18922532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element prediction of surface strain and fracture strength at the distal radius.
    Edwards WB; Troy KL
    Med Eng Phys; 2012 Apr; 34(3):290-8. PubMed ID: 21840240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission.
    Hu P; Wu T; Wang HZ; Qi XZ; Yao J; Cheng XD; Chen W; Zhang YZ
    Orthop Surg; 2017 Feb; 9(1):115-122. PubMed ID: 28300359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical study of periacetabular defects and cement filling.
    Li Z; Butala NB; Etheridge BS; Siegel HJ; Lemons JE; Eberhardt AW
    J Biomech Eng; 2007 Apr; 129(2):129-36. PubMed ID: 17408317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.