BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 20092332)

  • 1. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
    Xia F; Farmer DB; Lin YM; Avouris P
    Nano Lett; 2010 Feb; 10(2):715-8. PubMed ID: 20092332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap state analysis in electric-field-induced band gap for bilayer graphene.
    Kanayama K; Nagashio K
    Sci Rep; 2015 Oct; 5():15789. PubMed ID: 26511395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically Inert h-BN/Bilayer Graphene Interface in All-Two-Dimensional Heterostructure Field Effect Transistors.
    Uwanno T; Taniguchi T; Watanabe K; Nagashio K
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28780-28788. PubMed ID: 30080037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of a Gate Tunable Band Gap in Electrical Transport in ABC-Trilayer Graphene.
    Khodkov T; Khrapach I; Craciun MF; Russo S
    Nano Lett; 2015 Jul; 15(7):4429-33. PubMed ID: 26079989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gate-induced insulating state in bilayer graphene devices.
    Oostinga JB; Heersche HB; Liu X; Morpurgo AF; Vandersypen LM
    Nat Mater; 2008 Feb; 7(2):151-7. PubMed ID: 18059274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High on/off ratios in bilayer graphene field effect transistors realized by surface dopants.
    Szafranek BN; Schall D; Otto M; Neumaier D; Kurz H
    Nano Lett; 2011 Jul; 11(7):2640-3. PubMed ID: 21688768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio.
    Lee SY; Duong DL; Vu QA; Jin Y; Kim P; Lee YH
    ACS Nano; 2015 Sep; 9(9):9034-42. PubMed ID: 26308383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Tunable Carrier Tunneling in Vertical Graphene-WS
    Bai Z; Xiao Y; Luo Q; Li M; Peng G; Zhu Z; Luo F; Zhu M; Qin S; Novoselov K
    ACS Nano; 2022 May; 16(5):7880-7889. PubMed ID: 35506523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced logic performance with semiconducting bilayer graphene channels.
    Li SL; Miyazaki H; Hiura H; Liu C; Tsukagoshi K
    ACS Nano; 2011 Jan; 5(1):500-6. PubMed ID: 21158484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy.
    Mak KF; Lui CH; Shan J; Heinz TF
    Phys Rev Lett; 2009 Jun; 102(25):256405. PubMed ID: 19659105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular doping and band-gap opening of bilayer graphene.
    Samuels AJ; Carey JD
    ACS Nano; 2013 Mar; 7(3):2790-9. PubMed ID: 23414110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable transport gap in narrow bilayer graphene nanoribbons.
    Yu WJ; Duan X
    Sci Rep; 2013; 3():1248. PubMed ID: 23409239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.
    Qiu C; Zhang Z; Zhong D; Si J; Yang Y; Peng LM
    ACS Nano; 2015 Jan; 9(1):969-77. PubMed ID: 25545108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum transport and field-induced insulating states in bilayer graphene pnp junctions.
    Jing L; Velasco J; Kratz P; Liu G; Bao W; Bockrath M; Lau CN
    Nano Lett; 2010 Oct; 10(10):4000-4. PubMed ID: 20863070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene field effect transistor without an energy gap.
    Jang MS; Kim H; Son YW; Atwater HA; Goddard WA
    Proc Natl Acad Sci U S A; 2013 May; 110(22):8786-9. PubMed ID: 23671093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors.
    Wang L; Chen X; Yu A; Zhang Y; Ding J; Lu W
    Sci Rep; 2014 Jun; 4():5470. PubMed ID: 24969065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Schottky Barrier of Single-Layer MoS
    Jang AR
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
    Llinas JP; Fairbrother A; Borin Barin G; Shi W; Lee K; Wu S; Yong Choi B; Braganza R; Lear J; Kau N; Choi W; Chen C; Pedramrazi Z; Dumslaff T; Narita A; Feng X; Müllen K; Fischer F; Zettl A; Ruffieux P; Yablonovitch E; Crommie M; Fasel R; Bokor J
    Nat Commun; 2017 Sep; 8(1):633. PubMed ID: 28935943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.