BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20092555)

  • 1. Long-range effects of GABAergic inhibition in gerbil primary auditory cortex.
    Moeller CK; Kurt S; Happel MF; Schulze H
    Eur J Neurosci; 2010 Jan; 31(1):49-59. PubMed ID: 20092555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of iontophoretic application of the GABAA-antagonists bicuculline and gabazine on tone-evoked local field potentials in primary auditory cortex: interaction with ketamine anesthesia.
    Kurt S; Moeller CK; Jeschke M; Schulze H
    Brain Res; 2008 Jul; 1220():58-69. PubMed ID: 18022607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex.
    Kurt S; Crook JM; Ohl FW; Scheich H; Schulze H
    Hear Res; 2006 Feb; 212(1-2):224-35. PubMed ID: 16442250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons.
    Wang J; McFadden SL; Caspary D; Salvi R
    Brain Res; 2002 Jul; 944(1-2):219-31. PubMed ID: 12106684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of ambient GABA by phasic and tonic neuronal activation.
    Hoshino O
    Neural Comput; 2010 May; 22(5):1358-82. PubMed ID: 20100072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion processing in the auditory cortex of the rufous horseshoe bat: role of GABAergic inhibition.
    Firzlaff U; Schuller G
    Eur J Neurosci; 2001 Nov; 14(10):1687-701. PubMed ID: 11860463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycinergic inhibition creates a form of auditory spectral integration in nuclei of the lateral lemniscus.
    Peterson DC; Nataraj K; Wenstrup J
    J Neurophysiol; 2009 Aug; 102(2):1004-16. PubMed ID: 19515958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus.
    Davis KA; Young ED
    J Neurophysiol; 2000 Feb; 83(2):926-40. PubMed ID: 10669505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA(A) receptor inhibition does not affect mGluR-dependent LTD at hippocampal Schaffer collateral-CA1 synapses.
    Rohde M; Tokay T; Köhling R; Kirschstein T
    Neurosci Lett; 2009 Dec; 467(1):20-5. PubMed ID: 19800390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem.
    Magnusson AK; Park TJ; Pecka M; Grothe B; Koch U
    Neuron; 2008 Jul; 59(1):125-37. PubMed ID: 18614034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.
    Razak KA; Fuzessery ZM
    J Neurophysiol; 2009 Sep; 102(3):1366-78. PubMed ID: 19553486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex.
    Richter K; Hess A; Scheich H
    Brain Res; 1999 Jun; 831(1-2):184-99. PubMed ID: 10411998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning.
    Yanagihara S; Yazaki-Sugiyama Y
    Nat Commun; 2016 Jun; 7():11946. PubMed ID: 27327620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: evidence for wide spectral integration.
    Schulze H; Langner G
    J Comp Physiol A; 1999 Dec; 185(6):493-508. PubMed ID: 10633552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.
    Wang X; Jen PH; Wu FJ; Chen QC
    Brain Res; 2007 Sep; 1167():80-91. PubMed ID: 17689505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex.
    Wang J; Caspary D; Salvi RJ
    Neuroreport; 2000 Apr; 11(5):1137-40. PubMed ID: 10790896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin modifies the neuronal inhibitory responses to gamma-aminobutyric acid in the red nucleus: a microiontophoretic study in the rat.
    Licata F; Li Volsi G; Di Mauro M; Fretto G; Ciranna L; Santangelo F
    Exp Neurol; 2001 Jan; 167(1):95-107. PubMed ID: 11161597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus.
    Kaneda K; Kita H
    J Neurophysiol; 2005 Aug; 94(2):1104-14. PubMed ID: 16061489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus.
    D'Angelo WR; Sterbing SJ; Ostapoff EM; Kuwada S
    J Neurophysiol; 2005 Jun; 93(6):3390-400. PubMed ID: 15647399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.