These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20092565)

  • 1. Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution.
    Lalor EC; Foxe JJ
    Eur J Neurosci; 2010 Jan; 31(1):189-93. PubMed ID: 20092565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving precise temporal processing properties of the auditory system using continuous stimuli.
    Lalor EC; Power AJ; Reilly RB; Foxe JJ
    J Neurophysiol; 2009 Jul; 102(1):349-59. PubMed ID: 19439675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. At what time is the cocktail party? A late locus of selective attention to natural speech.
    Power AJ; Foxe JJ; Forde EJ; Reilly RB; Lalor EC
    Eur J Neurosci; 2012 May; 35(9):1497-503. PubMed ID: 22462504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music.
    Meyer M; Elmer S; Baumann S; Jancke L
    Restor Neurol Neurosci; 2007; 25(3-4):411-31. PubMed ID: 17943016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.
    Digeser FM; Wohlberedt T; Hoppe U
    Ear Hear; 2009 Dec; 30(6):704-12. PubMed ID: 19672195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is discrimination training necessary to cause changes in the P2 auditory event-related brain potential to speech sounds?
    Sheehan KA; McArthur GM; Bishop DV
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):547-53. PubMed ID: 16198089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status: an experimental parametric study.
    Akhoun I; Moulin A; Jeanvoine A; Ménard M; Buret F; Vollaire C; Scorretti R; Veuillet E; Berger-Vachon C; Collet L; Thai-Van H
    J Neurosci Methods; 2008 Nov; 175(2):196-205. PubMed ID: 18789971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-attentive spectro-temporal feature processing in the human auditory system.
    Zaehle T; Jancke L; Herrmann CS; Meyer M
    Brain Topogr; 2009 Sep; 22(2):97-108. PubMed ID: 19266276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down knowledge supports the retrieval of lexical information from degraded speech.
    Hannemann R; Obleser J; Eulitz C
    Brain Res; 2007 Jun; 1153():134-43. PubMed ID: 17451657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults.
    Akhoun I; Gallégo S; Moulin A; Ménard M; Veuillet E; Berger-Vachon C; Collet L; Thai-Van H
    Clin Neurophysiol; 2008 Apr; 119(4):922-33. PubMed ID: 18291717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal envelope processing in the human left and right auditory cortices.
    Liégeois-Chauvel C; Lorenzi C; Trébuchon A; Régis J; Chauvel P
    Cereb Cortex; 2004 Jul; 14(7):731-40. PubMed ID: 15054052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory-motor integration during fast repetition: the neuronal correlates of shadowing.
    Peschke C; Ziegler W; Kappes J; Baumgaertner A
    Neuroimage; 2009 Aug; 47(1):392-402. PubMed ID: 19345269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users.
    Kelly AS; Purdy SC; Thorne PR
    Clin Neurophysiol; 2005 Jun; 116(6):1235-46. PubMed ID: 15978485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleeping newborns extract prosody from continuous speech.
    Sambeth A; Ruohio K; Alku P; Fellman V; Huotilainen M
    Clin Neurophysiol; 2008 Feb; 119(2):332-41. PubMed ID: 18069059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in sensory evoked responses coincide with rapid improvement in speech identification performance.
    Alain C; Campeanu S; Tremblay K
    J Cogn Neurosci; 2010 Feb; 22(2):392-403. PubMed ID: 19485700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory middle-latency components to fusion of speech elements forming an auditory object.
    Pratt H; Mittelman N; Bleich N; Laufer I
    Clin Neurophysiol; 2004 May; 115(5):1083-9. PubMed ID: 15066534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the effects of phonation and articulation: hemispheric asymmetries in the auditory N1m response of the human brain.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    BMC Neurosci; 2005 Oct; 6():62. PubMed ID: 16225699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric lateralization of voice onset time (VOT) comparison between depth and scalp EEG recordings.
    Trébuchon-Da Fonseca A; Giraud K; Badier JM; Chauvel P; Liégeois-Chauvel C
    Neuroimage; 2005 Aug; 27(1):1-14. PubMed ID: 15896982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording human evoked potentials that follow the pitch contour of a natural vowel.
    Dajani HR; Purcell D; Wong W; Kunov H; Picton TW
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1614-8. PubMed ID: 16189976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.