These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 20092581)
1. Supplementary motor area and anterior intraparietal area integrate fine-graded timing and force control during precision grip. Haller S; Chapuis D; Gassert R; Burdet E; Klarhöfer M Eur J Neurosci; 2009 Dec; 30(12):2401-6. PubMed ID: 20092581 [TBL] [Abstract][Full Text] [Related]
2. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force. Dafotakis M; Sparing R; Eickhoff SB; Fink GR; Nowak DA Brain Res; 2008 Sep; 1228():73-80. PubMed ID: 18601912 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuo-motor mapping. Taubert M; Dafotakis M; Sparing R; Eickhoff S; Leuchte S; Fink GR; Nowak DA Clin Neurophysiol; 2010 Mar; 121(3):408-13. PubMed ID: 20004613 [TBL] [Abstract][Full Text] [Related]
4. Brain activity is similar during precision and power gripping with light force: an fMRI study. Kuhtz-Buschbeck JP; Gilster R; Wolff S; Ulmer S; Siebner H; Jansen O Neuroimage; 2008 May; 40(4):1469-81. PubMed ID: 18316207 [TBL] [Abstract][Full Text] [Related]
5. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans. Bonnard M; Galléa C; De Graaf JB; Pailhous J Eur J Neurosci; 2007 Feb; 25(3):872-80. PubMed ID: 17328782 [TBL] [Abstract][Full Text] [Related]
6. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study. Schabrun SM; Ridding MC; Miles TS Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327 [TBL] [Abstract][Full Text] [Related]
7. Force level independent representations of predictive grip force-load force coupling: a PET activation study. Boecker H; Lee A; Mühlau M; Ceballos-Baumann A; Ritzl A; Spilker ME; Marquart C; Hermsdörfer J Neuroimage; 2005 Mar; 25(1):243-52. PubMed ID: 15734359 [TBL] [Abstract][Full Text] [Related]
8. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging. Loubinoux I; Carel C; Alary F; Boulanouar K; Viallard G; Manelfe C; Rascol O; Celsis P; Chollet F J Cereb Blood Flow Metab; 2001 May; 21(5):592-607. PubMed ID: 11333370 [TBL] [Abstract][Full Text] [Related]
9. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. Jacobs S; Danielmeier C; Frey SH J Cogn Neurosci; 2010 Nov; 22(11):2594-608. PubMed ID: 19925200 [TBL] [Abstract][Full Text] [Related]
10. Timing functions of the supplementary motor area: an event-related fMRI study. Macar F; Anton JL; Bonnet M; Vidal F Brain Res Cogn Brain Res; 2004 Oct; 21(2):206-15. PubMed ID: 15464352 [TBL] [Abstract][Full Text] [Related]
11. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. Ehrsson HH; Fagergren E; Forssberg H J Neurophysiol; 2001 Jun; 85(6):2613-23. PubMed ID: 11387405 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Ehrsson HH; Fagergren A; Johansson RS; Forssberg H J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423 [TBL] [Abstract][Full Text] [Related]
13. Force related activations in rhythmic sequence production. Pope P; Wing AM; Praamstra P; Miall RC Neuroimage; 2005 Oct; 27(4):909-18. PubMed ID: 15993627 [TBL] [Abstract][Full Text] [Related]
14. Neural basis for the processes that underlie visually guided and internally guided force control in humans. Vaillancourt DE; Thulborn KR; Corcos DM J Neurophysiol; 2003 Nov; 90(5):3330-40. PubMed ID: 12840082 [TBL] [Abstract][Full Text] [Related]
15. Holding an object: neural activity associated with fingertip force adjustments to external perturbations. Ehrsson HH; Fagergren A; Ehrsson GO; Forssberg H J Neurophysiol; 2007 Feb; 97(2):1342-52. PubMed ID: 16914607 [TBL] [Abstract][Full Text] [Related]
16. Assessment of fine motor control in individuals with Parkinson's disease using force tracking with a secondary cognitive task. Pradhan SD; Brewer BR; Carvell GE; Sparto PJ; Delitto A; Matsuoka Y J Neurol Phys Ther; 2010 Mar; 34(1):32-40. PubMed ID: 20212366 [TBL] [Abstract][Full Text] [Related]
17. Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Sun FT; Miller LM; D'Esposito M Neuroimage; 2005 Oct; 28(1):227-37. PubMed ID: 16019230 [TBL] [Abstract][Full Text] [Related]
18. The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Ball T; Schreiber A; Feige B; Wagner M; Lücking CH; Kristeva-Feige R Neuroimage; 1999 Dec; 10(6):682-94. PubMed ID: 10600414 [TBL] [Abstract][Full Text] [Related]
19. Cortical connections of the macaque anterior intraparietal (AIP) area. Borra E; Belmalih A; Calzavara R; Gerbella M; Murata A; Rozzi S; Luppino G Cereb Cortex; 2008 May; 18(5):1094-111. PubMed ID: 17720686 [TBL] [Abstract][Full Text] [Related]
20. Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Frey SH; Vinton D; Norlund R; Grafton ST Brain Res Cogn Brain Res; 2005 May; 23(2-3):397-405. PubMed ID: 15820646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]