BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 20092597)

  • 41. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model.
    Li Q; Hua X; Li L; Zhou X; Tian Y; Deng Y; Zhang M; Yuan X; Chi W
    Cell Commun Signal; 2022 May; 20(1):59. PubMed ID: 35524333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An investigation into corneal alkali burns using an organ culture model.
    Zhao B; Ma A; Martin FL; Fullwood NJ
    Cornea; 2009 Jun; 28(5):541-6. PubMed ID: 19421042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes of uPA and uPA-R expression in the cornea after alkali burn.
    Yan J; Yang T; Li G; Zhang Y; Zeng Y; Yang J
    Colloids Surf B Biointerfaces; 2004 Aug; 37(1-2):49-52. PubMed ID: 15450308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. KH902, a recombinant human VEGF receptor fusion protein, reduced the level of placental growth factor in alkali burn induced-corneal neovascularization.
    Zhou AY; Bai YJ; Zhao M; Yu WZ; Li XX
    Ophthalmic Res; 2013; 50(3):180-6. PubMed ID: 24008241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subconjunctival injection of recombinant AAV-angiostatin ameliorates alkali burn induced corneal angiogenesis.
    Cheng HC; Yeh SI; Tsao YP; Kuo PC
    Mol Vis; 2007 Dec; 13():2344-52. PubMed ID: 18199977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model.
    Hackett JM; Lagali N; Merrett K; Edelhauser H; Sun Y; Gan L; Griffith M; Fagerholm P
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):651-7. PubMed ID: 20847116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Experimental studies on lamellar keratoplasty for alkali burns. 3. Wound healing in cases with preserved graft].
    Kotsuka N
    Nippon Ganka Gakkai Zasshi; 1968 Jun; 72(6):707-14. PubMed ID: 4880633
    [No Abstract]   [Full Text] [Related]  

  • 48. [Experimental study on the treatment of corneal melting after alkali burn with GM 6001].
    Liu H; Zhang W; Pan Z; Wu Y
    Zhonghua Yan Ke Za Zhi; 2002 Sep; 38(9):539-42. PubMed ID: 12410973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Limited versus total epithelial debridement ocular surface injury: Live fluorescence imaging of hemangiogenesis and lymphangiogenesis in Prox1-GFP/Flk1::Myr-mCherry mice.
    Chang JH; Putra I; Huang YH; Chang M; Han K; Zhong W; Gao X; Wang S; Dugas-Ford J; Nguyen T; Hong YK; Azar DT
    Biochim Biophys Acta; 2016 Oct; 1860(10):2148-56. PubMed ID: 27233452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of RAP1 enhances corneal recovery following alkali injury.
    Poon MW; Yan L; Jiang D; Qin P; Tse HF; Wong IY; Wong DS; Tergaonkar V; Lian Q
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):711-21. PubMed ID: 25574050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapamycin inhibits corneal inflammatory response and neovascularization in a mouse model of corneal alkali burn.
    Li J; Han J; Shi Y; Liu M
    Exp Eye Res; 2023 Aug; 233():109539. PubMed ID: 37315833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [An experimental study on the fate of the amniotic membrane after amniotic membrane transplantation for acute alkaline burn of rat cornea].
    Chen Y; Yan XM; Wu HR; Rong B
    Zhonghua Yan Ke Za Zhi; 2012 Jan; 48(1):27-32. PubMed ID: 22490913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Corneal lymphangiogenesis: implications in immunity.
    Patel SP; Dana R
    Semin Ophthalmol; 2009; 24(3):135-8. PubMed ID: 19437348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitory effects of
    Wang YL; Gao GP; Wang YQ; Wu Y; Peng ZY; Zhou Q
    Mol Vis; 2017; 23():286-295. PubMed ID: 28479848
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Experimental studies on lamellar keratoplasty for alkali burns. II. The wound healing. 2. The time of operation and the wound healing. 3. Long term observation].
    Kotsuka N
    Nippon Ganka Gakkai Zasshi; 1968 Jun; 72(6):697-706. PubMed ID: 4880632
    [No Abstract]   [Full Text] [Related]  

  • 56. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing.
    Ye J; Yao K; Kim JC
    Eye (Lond); 2006 Apr; 20(4):482-90. PubMed ID: 15895027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization.
    Zhang Z; Ma JX; Gao G; Li C; Luo L; Zhang M; Yang W; Jiang A; Kuang W; Xu L; Chen J; Liu Z
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4062-71. PubMed ID: 16249481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-kappaB, in treatment of corneal alkali burns in mice.
    Saika S; Miyamoto T; Yamanaka O; Kato T; Ohnishi Y; Flanders KC; Ikeda K; Nakajima Y; Kao WW; Sato M; Muragaki Y; Ooshima A
    Am J Pathol; 2005 May; 166(5):1393-403. PubMed ID: 15855640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histochemical study of leukocyte elastase activity in alkali-burned rabbit cornea.
    Cejková J
    Ophthalmic Res; 1997; 29(3):154-60. PubMed ID: 9211468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [An efficiency study of transplantation of allogenic fibroblasts cultivated in collagen gel for the treatment of corneal burn defects in experiment].
    Makarov PV; Gundarova RA; Terskikh VV; Vasil'ev AV; Khodzhabekian GV; Ivanov AA; Maksimov IB; Fedorov DN; Lapina LA; Shinin VV
    Vestn Oftalmol; 2004; 120(4):27-9. PubMed ID: 15384844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.