BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2009292)

  • 1. Influence of pH on the structural changes of beta-lactoglobulin studied by tryptic hydrolysis.
    Chobert JM; Dalgalarrondo M; Dufour E; Bertrand-Harb C; Haertlé T
    Biochim Biophys Acta; 1991 Mar; 1077(1):31-4. PubMed ID: 2009292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MS.
    Chelulei Cheison S; Brand J; Leeb E; Kulozik U
    J Agric Food Chem; 2011 Mar; 59(5):1572-81. PubMed ID: 21319805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases.
    Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T
    Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of genetic variation on the tryptic hydrolysis of bovine beta-lactoglobulin A, B, and C.
    Creamer LK; Nilsson HC; Paulsson MA; Coker CJ; Hill JP; Jiménez-Flores R
    J Dairy Sci; 2004 Dec; 87(12):4023-32. PubMed ID: 15545362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transglutaminase catalyses the modification of glutamine side chains in the C-terminal region of bovine beta-lactoglobulin.
    Coussons PJ; Price NC; Kelly SM; Smith B; Sawyer L
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):803-6. PubMed ID: 1350436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of beta-structural domains of beta-lactoglobulin liberated by limited proteolysis.
    Chen SX; Hardin CC; Swaisgood HE
    J Protein Chem; 1993 Oct; 12(5):613-25. PubMed ID: 8142004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptic proteolysis of esterified beta-casein and beta-lactoglobulin.
    Briand L; Chobert JM; Haertlé T
    Int J Pept Protein Res; 1995 Jul; 46(1):30-6. PubMed ID: 7558594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure denaturation of beta-lactoglobulin. Different stabilities of isoforms A and B, and an investigation of the Tanford transition.
    Botelho MM; Valente-Mesquita VL; Oliveira KM; Polikarpov I; Ferreira ST
    Eur J Biochem; 2000 Apr; 267(8):2235-41. PubMed ID: 10759846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis.
    Mao Y; Krischke M; Hengst C; Kulozik U
    Food Chem; 2018 Jul; 253():194-202. PubMed ID: 29502821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteolysis of bovine beta-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity.
    Iametti S; Rasmussen P; Frøkiaer H; Ferranti P; Addeo F; Bonomi F
    Eur J Biochem; 2002 Mar; 269(5):1362-72. PubMed ID: 11874450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies.
    Taulier N; Chalikian TV
    J Mol Biol; 2001 Dec; 314(4):873-89. PubMed ID: 11734004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the antigenicity of native and unfolded beta-lactoglobulin.
    Takahashi T; Yamauchi K; Kaminogawa S
    Agric Biol Chem; 1990 Mar; 54(3):691-7. PubMed ID: 1369986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of an aggregating peptide from a tryptic hydrolysate of whey proteins.
    Pouliot Y; Guy MM; Tremblay M; Gaonac'h AC; Chay Pak Ting BP; Gauthier SF; Voyer N
    J Agric Food Chem; 2009 May; 57(9):3760-4. PubMed ID: 19298064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of physicochemical conditions on peptide-peptide interactions in a tryptic hydrolysate of beta-lactoglobulin and identification of aggregating peptides.
    Groleau PE; Morin P; Gauthier SF; Pouliot Y
    J Agric Food Chem; 2003 Jul; 51(15):4370-5. PubMed ID: 12848512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state kinetics and thermodynamics of the hydrolysis of beta-lactoglobulin by trypsin.
    Olsen K; Otte J; Skibsted LH
    J Agric Food Chem; 2000 Aug; 48(8):3086-9. PubMed ID: 10956073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of beta-casein hydrolysis by wild-type and engineered trypsin.
    Vorob'ev MM; Dalgalarrondo M; Chobert JM; Haertlé T
    Biopolymers; 2000 Oct; 54(5):355-64. PubMed ID: 10935975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and mechanism of the Tanford transition of bovine beta-lactoglobulin studied using heteronuclear NMR spectroscopy.
    Sakurai K; Goto Y
    J Mol Biol; 2006 Feb; 356(2):483-96. PubMed ID: 16368109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emulsification of chemical and enzymatic hydrolysates of beta-lactoglobulin: characterization of the peptides adsorbed at the interface.
    Rahali V; Chobert JM; Haertlé T; Guéguen J
    Nahrung; 2000 Apr; 44(2):89-95. PubMed ID: 10795574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of esterification on the folding and the susceptibility to peptic proteolysis of beta-lactoglobulin.
    Chobert JM; Briand L; Grinberg V; Haertlé T
    Biochim Biophys Acta; 1995 Apr; 1248(2):170-6. PubMed ID: 7748899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pig beta-lactoglobulin I (Sus scrofa domestica, Artiodactyla). The primary structure of the major component.
    Conti A; Godovac-Zimmermann J; Pirchner F; Liberatori J; Braunitzer G
    Biol Chem Hoppe Seyler; 1986 Sep; 367(9):871-8. PubMed ID: 3790256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.