BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20093000)

  • 1. Combustion characteristics of coal and refuse from passenger trains.
    Fu-min R; Feng Y; Ming G; Min Y
    Waste Manag; 2010 Jul; 30(7):1196-205. PubMed ID: 20093000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste.
    Muthuraman M; Namioka T; Yoshikawa K
    Bioresour Technol; 2010 Apr; 101(7):2477-82. PubMed ID: 20006927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.
    Wagland ST; Kilgallon P; Coveney R; Garg A; Smith R; Longhurst PJ; Pollard SJ; Simms N
    Waste Manag; 2011 Jun; 31(6):1176-83. PubMed ID: 21288710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sewage sludge blending on the coal combustion: a thermogravimetric assessment.
    Otero M; Gómez X; García AI; Morán A
    Chemosphere; 2007 Nov; 69(11):1740-50. PubMed ID: 17624399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermogravimetric analysis of biowastes during combustion.
    Otero M; Sanchez ME; Gómez X; Morán A
    Waste Manag; 2010 Jul; 30(7):1183-7. PubMed ID: 20079622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.
    Zhang K; Zhang K; Cao Y; Pan WP
    Bioresour Technol; 2013 Mar; 131():325-32. PubMed ID: 23370215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
    Gil MV; Casal D; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Jul; 101(14):5601-8. PubMed ID: 20189802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.
    Li XG; Lv Y; Ma BG; Jian SW; Tan HB
    Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.
    Chindaprasirt P; Rattanasak U
    Waste Manag; 2010 Apr; 30(4):667-72. PubMed ID: 19854038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-combustion of solid recovered fuels in coal-fired power plants.
    Thiel S; Thomé-Kozmiensky KJ
    Waste Manag Res; 2012 Apr; 30(4):392-403. PubMed ID: 22143900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.
    Mikulčić H; von Berg E; Vujanović M; Duić N
    Waste Manag Res; 2014 Jul; 32(7):661-9. PubMed ID: 24963094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Management of MSW in Spain and recovery of packaging steel scrap.
    Tayibi H; Peña C; López FA; López-Delgado A
    Waste Manag; 2007; 27(11):1655-65. PubMed ID: 17161595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal-behavior study of chlorine released from composite refuse derived fuel.
    Song ZW; Lv YB; Tong LY
    Waste Manag; 2009 Aug; 29(8):2298-305. PubMed ID: 19342213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LIFAC ash--strategies for management.
    Anthony EJ; Berry EE; Blondin J; Bulewicz EM; Burwell S
    Waste Manag; 2005; 25(3):265-79. PubMed ID: 15823742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-combustion of agricultural residues with coal in a fluidized bed combustor.
    Ghani WA; Alias AB; Savory RM; Cliffe KR
    Waste Manag; 2009 Feb; 29(2):767-73. PubMed ID: 18614348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.
    Buratti C; Barbanera M; Bartocci P; Fantozzi F
    Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.
    Barbosa R; Lapa N; Boavida D; Lopes H; Gulyurtlu I; Mendes B
    J Hazard Mater; 2009 Oct; 170(2-3):902-9. PubMed ID: 19515486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.