BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 20093004)

  • 1. Cooperativity and protein folding rates.
    Portman JJ
    Curr Opin Struct Biol; 2010 Feb; 20(1):11-5. PubMed ID: 20093004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?
    Kaya H; Chan HS
    J Mol Biol; 2002 Jan; 315(4):899-909. PubMed ID: 11812156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple two-state protein folding kinetics requires near-levinthal thermodynamic cooperativity.
    Kaya H; Chan HS
    Proteins; 2003 Sep; 52(4):510-23. PubMed ID: 12910451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
    Badasyan A; Liu Z; Chan HS
    J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity.
    Knott M; Chan HS
    Proteins; 2006 Nov; 65(2):373-91. PubMed ID: 16909416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms for cooperative folding of proteins.
    Hao MH; Scheraga HA
    J Mol Biol; 1998 Apr; 277(4):973-83. PubMed ID: 9545385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing the transition state populations in simple protein models.
    Ozkan SB; Dill KA; Bahar I
    Biopolymers; 2003 Jan; 68(1):35-46. PubMed ID: 12579578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the relationship between funneled energy landscapes and two-state protein folding.
    Konermann L
    Proteins; 2006 Oct; 65(1):153-63. PubMed ID: 16894617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding kinetics of a lattice protein via a forward flux sampling approach.
    Borrero EE; Escobedo FA
    J Chem Phys; 2006 Oct; 125(16):164904. PubMed ID: 17092136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition state contact orders correlate with protein folding rates.
    Paci E; Lindorff-Larsen K; Dobson CM; Karplus M; Vendruscolo M
    J Mol Biol; 2005 Sep; 352(3):495-500. PubMed ID: 16120445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of native-state topology for determining the folding rate of two-state proteins.
    Gromiha MM
    J Chem Inf Comput Sci; 2003; 43(5):1481-5. PubMed ID: 14502481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding protein folding cooperativity based on topological consideration.
    Wu L; Li WF; Liu F; Zhang J; Wang J; Wang W
    J Chem Phys; 2009 Aug; 131(6):065105. PubMed ID: 19691415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring structures in protein folding funnels with free energy functionals: the transition state ensemble.
    Shoemaker BA; Wang J; Wolynes PG
    J Mol Biol; 1999 Apr; 287(3):675-94. PubMed ID: 10092467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact order dependent protein folding rates: kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences.
    Kaya H; Chan HS
    Proteins; 2003 Sep; 52(4):524-33. PubMed ID: 12910452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model.
    Garcia LG; Araújo AF
    Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection.
    Scalley-Kim M; Baker D
    J Mol Biol; 2004 Apr; 338(3):573-83. PubMed ID: 15081814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple lattice model that exhibits a protein-like cooperative all-or-none folding transition.
    Kolinski A; Gront D; Pokarowski P; Skolnick J
    Biopolymers; 2003 Jul; 69(3):399-405. PubMed ID: 12833266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates.
    Jewett AI; Pande VS; Plaxco KW
    J Mol Biol; 2003 Feb; 326(1):247-53. PubMed ID: 12547206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins.
    Ferguson A; Liu Z; Chan HS
    J Mol Biol; 2009 Jun; 389(3):619-36. PubMed ID: 19362564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.