BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 20093011)

  • 21. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.
    Sanna A; Andrésen JM
    ChemSusChem; 2012 Oct; 5(10):1944-57. PubMed ID: 22899352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels.
    Antunes MM; Russo PA; Wiper PV; Veiga JM; Pillinger M; Mafra L; Evtuguin DV; Pinna N; Valente AA
    ChemSusChem; 2014 Mar; 7(3):804-12. PubMed ID: 24497470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to α-olefins.
    Maetani S; Fukuyama T; Suzuki N; Ishihara D; Ryu I
    Chem Commun (Camb); 2012 Mar; 48(19):2552-4. PubMed ID: 22286391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production, separation and applications of phenolic-rich bio-oil--a review.
    Kim JS
    Bioresour Technol; 2015 Feb; 178():90-98. PubMed ID: 25239785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.
    Balakrishnan M; Sacia ER; Bell AT
    ChemSusChem; 2014 Apr; 7(4):1078-85. PubMed ID: 24596031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.
    Zhang S; Zhao X; Niu H; Shi Y; Cai Y; Jiang G
    J Hazard Mater; 2009 Aug; 167(1-3):560-6. PubMed ID: 19201085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressurised pyrolysis of Miscanthus using a fixed bed reactor.
    Melligan F; Auccaise R; Novotny EH; Leahy JJ; Hayes MH; Kwapinski W
    Bioresour Technol; 2011 Feb; 102(3):3466-70. PubMed ID: 21094043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant.
    Mas-Ballesté R; Que L
    J Am Chem Soc; 2007 Dec; 129(51):15964-72. PubMed ID: 18052063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly selective catalytic conversion of phenolic bio-oil to alkanes.
    Zhao C; Kou Y; Lemonidou AA; Li X; Lercher JA
    Angew Chem Int Ed Engl; 2009; 48(22):3987-90. PubMed ID: 19405059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.
    Awang M; Seng GM
    ChemSusChem; 2008; 1(3):210-4. PubMed ID: 18605208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enantioselective Friedel-Crafts reactions in water using a DNA-based catalyst.
    Boersma AJ; Feringa BL; Roelfes G
    Angew Chem Int Ed Engl; 2009; 48(18):3346-8. PubMed ID: 19334029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic enantioselective alkylations of tetrasubstituted olefins. Synthesis of all-carbon quaternary stereogenic centers through Cu-catalyzed asymmetric conjugate additions of alkylzinc reagents to enones.
    Hird AW; Hoveyda AH
    J Am Chem Soc; 2005 Nov; 127(43):14988-9. PubMed ID: 16248613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis.
    Bu Q; Lei H; Ren S; Wang L; Holladay J; Zhang Q; Tang J; Ruan R
    Bioresour Technol; 2011 Jul; 102(13):7004-7. PubMed ID: 21531545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organized surface functional groups: cooperative catalysis via thiol/sulfonic acid pairing.
    Margelefsky EL; Zeidan RK; Dufaud V; Davis ME
    J Am Chem Soc; 2007 Nov; 129(44):13691-7. PubMed ID: 17929925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins.
    Zhang SL; Fu Y; Shang R; Guo QX; Liu L
    J Am Chem Soc; 2010 Jan; 132(2):638-46. PubMed ID: 20038103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae.
    Bae YJ; Ryu C; Jeon JK; Park J; Suh DJ; Suh YW; Chang D; Park YK
    Bioresour Technol; 2011 Feb; 102(3):3512-20. PubMed ID: 21129955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofuel production from catalytic cracking of woody oils.
    Xu J; Jiang J; Chen J; Sun Y
    Bioresour Technol; 2010 Jul; 101(14):5586-91. PubMed ID: 20206508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids.
    Biller P; Riley R; Ross AB
    Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-free arylation of oxygen nucleophiles with diaryliodonium salts.
    Jalalian N; Petersen TB; Olofsson B
    Chemistry; 2012 Oct; 18(44):14140-9. PubMed ID: 23015511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface.
    Crossley S; Faria J; Shen M; Resasco DE
    Science; 2010 Jan; 327(5961):68-72. PubMed ID: 20044571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.