BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20093075)

  • 1. An auditory oddball brain-computer interface for binary choices.
    Halder S; Rea M; Andreoni R; Nijboer F; Hammer EM; Kleih SC; Birbaumer N; Kübler A
    Clin Neurophysiol; 2010 Apr; 121(4):516-23. PubMed ID: 20093075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERPs to infrequent auditory stimuli in two- and three-stimulus versions of the inter-modal oddball task.
    Brown CR; Barry RJ; Clarke AR
    Int J Psychophysiol; 2009 Nov; 74(2):174-82. PubMed ID: 19733601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals.
    Sorger B; Dahmen B; Reithler J; Gosseries O; Maudoux A; Laureys S; Goebel R
    Prog Brain Res; 2009; 177():275-92. PubMed ID: 19818908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory processing in an inter-modal oddball task: effects of a combined auditory/visual standard on auditory target ERPs.
    Brown CR; Clarke AR; Barry RJ
    Int J Psychophysiol; 2007 Aug; 65(2):122-31. PubMed ID: 17481761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-related potential and autonomic signs of maladaptive information processing during an auditory oddball task in panic disorder.
    Wise V; McFarlane AC; Clark CR; Battersby M
    Int J Psychophysiol; 2009 Oct; 74(1):34-44. PubMed ID: 19607864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of selective attention to auditory stimuli: toward vision-free brain-computer interfacing.
    Kim DW; Hwang HJ; Lim JH; Lee YH; Jung KY; Im CH
    J Neurosci Methods; 2011 Apr; 197(1):180-5. PubMed ID: 21335029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task.
    Brown CR; Clarke AR; Barry RJ
    Int J Psychophysiol; 2006 Oct; 62(1):77-86. PubMed ID: 16529831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients.
    Kübler A; Furdea A; Halder S; Hammer EM; Nijboer F; Kotchoubey B
    Ann N Y Acad Sci; 2009 Mar; 1157():90-100. PubMed ID: 19351359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A P300-based brain-computer interface: initial tests by ALS patients.
    Sellers EW; Donchin E
    Clin Neurophysiol; 2006 Mar; 117(3):538-48. PubMed ID: 16461003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An auditory oddball (P300) spelling system for brain-computer interfaces.
    Furdea A; Halder S; Krusienski DJ; Bross D; Nijboer F; Birbaumer N; Kübler A
    Psychophysiology; 2009 May; 46(3):617-25. PubMed ID: 19170946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds.
    Pakarinen S; Lovio R; Huotilainen M; Alku P; Näätänen R; Kujala T
    Biol Psychol; 2009 Dec; 82(3):219-26. PubMed ID: 19646504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An auditory brain–computer interface evoked by natural speech.
    Lopez-Gordo MA; Fernandez E; Romero S; Pelayo F; Prieto A
    J Neural Eng; 2012 Jun; 9(3):036013. PubMed ID: 22626956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human EEG very high frequency oscillations reflect the number of matches with a template in auditory short-term memory.
    Lenz D; Jeschke M; Schadow J; Naue N; Ohl FW; Herrmann CS
    Brain Res; 2008 Jul; 1220():81-92. PubMed ID: 18036577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newborn infants process pitch intervals.
    Stefanics G; Háden GP; Sziller I; Balázs L; Beke A; Winkler I
    Clin Neurophysiol; 2009 Feb; 120(2):304-8. PubMed ID: 19131275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolongation of alpha oscillations in auditory oddball paradigm.
    Oniz A; Başar E
    Int J Psychophysiol; 2009 Mar; 71(3):235-41. PubMed ID: 19027800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An auditory brain-computer interface based on the self-regulation of slow cortical potentials.
    Pham M; Hinterberger T; Neumann N; Kübler A; Hofmayer N; Grether A; Wilhelm B; Vatine JJ; Birbaumer N
    Neurorehabil Neural Repair; 2005 Sep; 19(3):206-18. PubMed ID: 16093411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.